Guidelines for Implementation and Priorities in Testing IKEv2

Appendix A. EAP-MD5

IPv6 Promotion Council Certification WG IPsec SWG

All Rights Reserved. Copyright (C) 2008 NTT Network Service Systems Laboratories

Table of Contents

1. Overview	4
2. Sequence and Payload Format	5
2.1. Authentication using EAP-MD5 in the case of EN to SGW	5
2.2. Authentication using EAP-MD5 in the case of SGW to SGW	6
3. Payload format	7
3.1. IKE_SA_INIT Request (1)	7
3.1.1. IKE Header	7
3.1.2. Security Association Payload	8
3.1.3. Key Exchange Payload	12
3.1.4. Nonce Payload	13
3.2. IKE_SA_INIT Response (2)	14
3.2.1. IKE Header	14
3.2.2. Security Association Payload	15
3.2.3. Key Exchange Payload	19
3.2.4. Nonce Payload	20
3.3. IKE_AUTH Request (3)	21
3.3.1. IKE Header	21
3.3.2. Encrypted Payload	22
3.3.3. Identification – Initiator Payload	
3.3.4. Certificate Request Payload [optional]	
3.3.5. Configuration Payload [optional]	25
3.3.6. Security Association Payload	27
3.3.7. Traffic Selectors – Initiator Payload	31
3.3.8. Traffic Selectors – Responder Payload	
3.4. IKE_AUTH Response (4)	35
3.4.1. IKE Header	35
3.4.2. Encrypted Payload	36
3.4.3. Identification – Response Payload	37
3.4.4. Certificate Payload	
3.4.5. Authentication Payload	39
3.4.6. Extensible Authentication Payload	
3.5. IKE_AUTH Request (5)	42
3.5.1. IKE Header	42

3.5.2. Encrypted Payload	43
3.5.3. Extensible Authentication Payload	44
3.6. IKE_AUTH Response (6)	46
3.6.1. IKE Header	46
3.6.2. Encrypted Payload	47
3.6.3. Extensible Authentication Payload	48
3.7. IKE_AUTH Request (7)	50
3.7.1. IKE Header	50
3.7.2. Encrypted Payload	51
3.7.3. Authentication Payload	52
3.8. IKE_AUTH Response (8)	53
3.8.1. IKE Header	53
3.8.2. Encrypted Payload	54
3.8.3. Authentication Payload	55
3.8.4. Configuration Payload [optional]	56
3.8.5. Security Association Payload	58
3.8.6. Traffic Selectors – Initiator Payload	62
3.8.7. Traffic Selectors – Responder Payload	64

1. Overview

- \cdot This document describes the recommended specifications with sequences and packet formats for EAP-MD5 authentication method using IKEv2.
- \cdot These specifications in this document are outside of the scope of the requirement for acquisition of the IPv6 Ready Logo.

2. Sequence and Payload Format

2.1. Authentication using EAP-MD5 in the case of EN to SGW

Figure 2-1-1 Authentication using EAP by EN to SGW

Figure 2-1-2 payloads authentication using EAP by EN to SGW

2.2. Authentication using EAP-MD5 in the case of SGW to SGW

Figure 2-2-1 Authentication using EAP by SGW to SGW

Figure 2-2-2 payloads authentication using EAP by SGW to SGW

3. Payload format

3.1. IKE_SA_INIT Request (1)

3.1.1. IKE Header

The format of the IKE header is shown in Figure 3-1-1.

Figure 3-1-1 IKE Header Format

- · An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT Request's IKE_SA Initiator's SPI field value.
- · An IKE_SA Responder's SPI field set to zero.
- · A Next Payload field set to Security Association(33).
- · A Major Version field set to 2.
- · A Minor Version field set to zero.
- · An Exchange Type field set to IKE_SA_INIT(34).
- · A Flags field set to 0x08.
- · A Message ID field set to zero.
- · A Length field set to length of total message (header + payloads) in octets.

3.1.2. Security Association Payload

The format of the Security Association payload is shown in Figure 3-1-2.

Figure 3-1-2 Security Association Payload Format

- · A Next Payload field set to Key Exchange(34).
- $\cdot\,$ A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.

A Proposals field set to following.

The format of the Proposal Structure is shown in Figure 3-1-3.

Figure 3-1-3 Proposal Substructure Format

- \cdot A 0 or 2 field set to zero.
- · A RESERVED field set to zero.
- · A Proposal Length field set to length of this proposal.
- · A Proposal # field set to 1.
- · A Protocol ID field set to IKE(1).
- $\cdot\,$ A SPI Size field set to zero.
- · A# of Transforms field set to number of the transforms in this proposal.

A Transforms field set to following (There are 4 Transform Substructures).

The format of the Transform Structure is shown in Figure 3-1-4.

Figure 3-1-4 Transform Substructure Format

Transform Substructure #1

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Encryption Algorithm(1).
- · A RESERVED field set to zero.
- · A Transform ID field set to ENCR_3DES(3).

Transform Substructure #2

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Pseudo-random Function(2).
- · A RESERVED field set to zero.
- · A Transform ID field set to PRF_HMAC_SHA1(2).

Transform Substructure #3

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Integrity Algorithm(3).
- $\cdot\,$ A RESERVED field set to zero.
- · A Transform ID field set to AUTH_HMAC_SHA1_96(2).

Transform Substructure #4

- A 0 or 3 field set to 0.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Diffie-Hellman Group(4).
- $\cdot\,$ A RESERVED field set to zero.
- · A Transform ID field set to alternate 1023-bit MODP group(2).

3.1.3. Key Exchange Payload

The format of the Key Exchange payload is shown in Figure 3-1-5.

Figure 3-1-5 Key Exchange Payload Format

- · A Next Payload field set to Nonce(40).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · A DH Group # field set to alternate 1023-bit MODP group(2).
- \cdot A RESERVED field set to zero .
- · A Key Exchange Data field set to Diffie-Hellman public value.

3.1.4. Nonce Payload

The format of the Nonce payload is shown in Figure 3-1-6.

Figure 3-1-6 Nonce Payload Format

- · A Next Payload field set to No Next Payload(0).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.
- · A Nonce Data field set to random data.

3.2. IKE_SA_INIT Response (2)

3.2.1. IKE Header

The format of the IKE header is shown in Figure 3-2-1.

Figure 3-2-1 IKE Header Format

- · An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT Request's IKE_SA Initiator's SPI field value.
- · An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT Responder's IKE_SA Responder's SPI field value.
- · A Next Payload field set to Security Association(33).
- · A Major Version field set to 2.
- · A Minor Version field set to zero.
- · An Exchange Type field set to IKE_SA_INIT(34).
- · A Flags field set to 0x20.
- $\cdot\,$ A Message ID field set to zero.
- · A Length field set to length of total message (header + payloads) in octets.

3.2.2. Security Association Payload

The format of the Security Association payload is shown in Figure 3-2-2.

Figure 3-2-2 Security Association Payload Format

- · A Next Payload field set to Key Exchange(34).
- $\cdot\,$ A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.

A Proposals field set to following.

The format of the Proposal Structure is shown in Figure 3-2-3.

Figure 3-2-3 Proposal Substructure Format

- · A 0 or 2 field set to zero.
- · A RESERVED field set to zero.
- · A Proposal Length field set to length of this proposal.
- · A Proposal # field set to 1.
- · A Protocol ID field set to IKE(1).
- · A SPI Size field set to zero.
- · A# of Transforms field set to number of the transforms in this proposal.
- · A SPI field set to sending SPI.

A Transforms field set to following (There are 4 Transform Substructures).

The format of the Transform Structure is shown in Figure 3-2-4.

Figure 3-2-4 Transform Substructure Format

Transform Substructure #1

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Encryption Algorithm(1).
- · A RESERVED field set to zero.
- · A Transform ID field set to ENCR_3DES(3).

Transform Substructure #2

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Pseudo-random Function(2).
- · A RESERVED field set to zero.
- · A Transform ID field set to PRF_HMAC_SHA1(2).

Transform Substructure #3

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Integrity Algorithm(3).
- $\cdot\,$ A RESERVED field set to zero.
- · A Transform ID field set to AUTH_HMAC_SHA1_96(2).

Transform Substructure #4

- A 0 or 3 field set to 0.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Diffie-Hellman Group(4).
- $\cdot\,$ A RESERVED field set to zero.
- · A Transform ID field set to alternate 1023-bit MODP group(2).

3.2.3. Key Exchange Payload

The format of the Key Exchange payload is shown in Figure 3-2-5.

Figure 3-2-5 Key Exchange Payload Format

- · A Next Payload field set to Nonce(40).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · A DH Group # field set to alternate 1023-bit MODP group(2).
- \cdot A RESERVED field set to zero .
- · A Key Exchange Data field set to Diffie-Hellman public value.

3.2.4. Nonce Payload

The format of the Nonce payload is shown in Figure 3-2-6.

Figure 3-2-6 Nonce Payload Format

- · A Next Payload field set to No Next Payload(0).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.
- · A Nonce Data field set to random data.

3.3. IKE_AUTH Request (3)

3.3.1. IKE Header

The format of the IKE header is shown in Figure 3-3-1.

Figure 3-3-1 IKE Header Format

- · An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT Request's IKE_SA Initiator's SPI field value.
- · An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT Responder's IKE_SA Responder's SPI field value.
- · A Next Payload field set to Encrypted(46).
- · A Major Version field set to 2.
- · A Minor Version field set to zero.
- · An Exchange Type field set to IKE_AUTH(35).
- · A Flags field set to 0x08.
- · A Message ID field set to 0x00000001.
- · A Length field set to length of total message (header + payloads) in octets.

3.3.2. Encrypted Payload

The format of the Encrypted payload is shown in Figure 3-3-2.

Figure 3-3-2 Encrypted Payload Format

- · A Next Payload field set to Identification Initiator(35).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · An Initialization Vector field set to a randomly chosen value whose length is equal to block length of the underlying encryption algorithm.
- · An Encrypted IKE Payloads field set to encrypted IKE Payloads.
- · A Padding field set to any value which to be a multiple of the encryption block size.
- · A Pad Length field set to the length of the Padding field.
- · An Integrity Checksum Data field set to the cryptographic checksum of the entire message.

3.3.3. Identification - Initiator Payload

The format of the Identification - Initiator payload is shown in Figure 3-3-3.

Figure 3-3-3 Identification - Initiator Header Format

- · A Next Payload field set to Certificate Request(38).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · An ID Type field set to ID_TYPE_RFC84_ADDR(0x03).
- · A RESERVED field set to zero.
- · An Identification Data field set to ID_TYPE_RFC84_ADDR(0x03).
 - e.g. jsmith@example.com (*)
 - * Note: The above example is an example in case of ID_TYPE_RFC84_ADDR.

3.3.4. Certificate Request Payload [optional]

The format of the Certificate Request payload is shown in Figure 3-3-4.

Figure 3-3-4 Certificate Request Payload Format

- · A Next Payload field set to Configuration(47).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length set to length of the current payload.
- · A Cert Encoding field set X.509 Certificate Signature(0x04).
- · A Certification Authority field set to encoded certificate.

3.3.5. Configuration Payload [optional]

The format of the Configuration payload is shown in Figure 3-3-5.

Figure 3-3-5 Configuration Payload Format

- · A Next Payload field set to Security Association(33).
- · A Critical field set to zero.
- · A Payload length field set to length of the current payload.
- · A CFG Type field set to CFG REQUEST(1).
- $\cdot\,$ A RESERVED field set to zero.

A Configuration Attributes field set to following.

The format of the Configuration Attributes is shown in Figure 3-3-6.

Figure 3-3-6 Configuration Attributes Format

- · A Reserved field set to zero.
- · An Attribute Type field set to unique identifier for each of the Configuration Attribute Types.
- · A Length field set to length of the Value field.
- · A Value field set to the variable-length value of this Configuration Attribute.

3.3.6. Security Association Payload

The format of the Security Association payload is shown in Figure 3-3-7.

Figure 3-3-7 Security Association Payload Format

- · A Next Payload field set to Traffic Selector Initiator(44).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.

A Proposals field set to following.

The format of the Proposal Structure is shown in Figure 3-3-8.

Figure 3-3-8 Proposal Substructure Format

- · A 0 or 2 field set to 0.
- · A RESERVED field set to zero.
- · A Proposal Length field set to length of this proposal.
- · A Proposal # field set to 1.
- · A Protocol ID field set to ESP(3).
- · A SPI Size field set to length of the sending SPI.
- · A# of Transforms field set to number of transforms in this proposal.
- · A SPI field set to sending SPI.

A Transform field set to following (There are 3 Transform Substructures).

The format of the Transform Structure is shown in Figure 3-3-9.

Figure 3-3-9 Transform Substructure Format

Transform Substructure #1

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Encryption Algorithm(1).
- · A RESERVED field set to zero.
- · A Transform ID field set to ENCR_3DES(3).

Transform Substructure #2

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Integrity Algorithm(3).
- · A RESERVED field set to zero.
- · A Transform ID field set to AUTH_HMAC_SHA1_96(2).

Transform Substructure #3

- A 0 or 3 field set to 0.
- $\cdot\,$ A RESERVED field set to zero.
- A Transform Length field set to length of the transform substructure including header and attributes.
- \cdot A Transform Type field set to Extended Sequence Numbers(5).
- $\cdot\,$ A RESERVED field set to zero.
- · A Transform ID field set to No Extended Sequence Numbers(0).

3.3.7. Traffic Selectors – Initiator Payload

The format of the Traffic Selectors – Initiator payload is shown in Figure 3-3-10.

Figure 3-3-10 Traffic Selectors - Initiator Format

- · A Next Payload field set to Traffic Selectors Responder(45).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · A Number of TSs field set to 1.
- · A RESERVED field set to zero.

A Traffic Selectors field set to following.

The format of the Traffic Selectors is shown in Figure 3-3-11.

Figure 3-3-11 Traffic Selector

- · A Ts Type field set to TS_IPV6_ADDR_RANGE(8).
- · An IP Protocol ID field set to Any(0).
- $\cdot\,$ A Selector Length field set to length of the this traffic selector.
- · A Start Port field set to 0.
- · An End Port field set to 65535.
- · A Starting Address field set to the smallest address included in this Traffic Selector.
- · An Ending Address field set to the largest address included in this Traffic Selector.

3.3.8. Traffic Selectors – Responder Payload

The format of the Traffic Selectors – Responder payload is shown in Figure 3-3-12.

Figure 3-3-12 Traffic Selectors - Responder Format

- · A Next Payload field set to No Next Payload(0).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · A Number of TSs field set to 1.
- · A RESERVED field set to zero.

A Traffic Selectors field set to following.

The format of the Traffic Selectors is shown in Figure 3-3-13.

Figure 3-3-13 Traffic Selector

- · A Ts Type field set to TS_IPV6_ADDR_RANGE(8).
- · An IP Protocol ID field set to Any(0).
- $\cdot\,$ A Selector Length field set to length of the this traffic selector.
- · A Start Port field set to 0.
- · An End Port field set to 65535.
- · A Starting Address field set to the smallest address included in this Traffic Selector.
- · An Ending Address field set to the largest address included in this Traffic Selector.

3.4. IKE_AUTH Response (4)

3.4.1. IKE Header

The format of the IKE header is shown in Figure 3-4-1.

Figure 3-4-1 IKE Header Format

- · An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT Request's IKE_SA Initiator's SPI field value.
- · An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT Responder's IKE_SA Responder's SPI field value.
- · A Next Payload field set to Encrypted(46).
- · A Major Version field set to 2.
- · A Minor Version field set to zero.
- · An Exchange Type field set to IKE_AUTH(35).
- · A Flags field set to 0x20.
- · A Message ID field set to 0x00000001.
- · A Length field set to length of total message (header + payloads) in octets.

3.4.2. Encrypted Payload

The format of the Encrypted payload is shown in Figure 3-4-2.

Figure 3-4-2 Encrypted Payload Format

- · A Next Payload field set to Identification Responder(36).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- An Initialization Vector field set to a randomly chosen value whose length is equal to block length of the underlying encryption algorithm.
- · An Encrypted IKE Payloads field set to encrypted IKE Payloads.
- · A Padding field set to any value which to be a multiple of the encryption block size.
- · A Pad Length field set to the length of the Padding field.
- · An Integrity Checksum Data field set to the cryptographic checksum of the entire message.

3.4.3. Identification - Response Payload

The format of the Identification - Responder payload is shown in Figure 3-4-3.

Figure 3-4-3 Identification - Responder Header Format

- · A Next Payload field set to Certificate(37).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · An ID Type field set to ID_TYPE_RFC882_ADDR(0x03).
- · A RESERVED field set to zero.
- · An Identification Data field set to ID_TYPE_RFC84_ADDR(0x03).
 - e.g. jsmith@example.com (*)
 - * Note: The above example is an example in case of ID_TYPE_RFC84_ADDR.

3.4.4. Certificate Payload

The format of the Certificate payload is shown in Figure 3-4-4.

Figure 3-4-4 Certificate Payload Format

- · A Next Payload field set to Authentication(39).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.
- · A Cert Encoding field set to X.509 Certificate Signature(0x04).
- · A Certificate Data set to encoded certificate data.

3.4.5. Authentication Payload

The format of the Authentication payload is shown in Figure 3-4-5.

Figure 3-4-5 Authentication Payload Format

- · A Next Payload field set to Extensive Authentication(48).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · An Auth Method set to Shared Key Message Integrity Code(2).
- · A RESERVED field set to zero.
- · An Authentication Data set to correct authentication value.

3.4.6. Extensible Authentication Payload

The format of the Extensible Authentication payload is shown in Figure 3-4-6.

Figure 3-4-6 EAP Payload Format

- · A Next Payload field set to No Next Payload(0).
- $\cdot\,$ A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.

An EAP Message field set to following.

The format of the EAP Message is shown in Figure 3-4-7.

Figure 3-4-7 EAP Message Format

- · A Code field set to Request(1).
- · An Identifier field set to random value.
- $\cdot\,$ A Length field set to length of the EAP Message.
- · A Type field set to MD5-Challenge(4).
- $\cdot\,$ A Type Data field set to random value.

3.5. IKE_AUTH Request (5)

3.5.1. IKE Header

The format of the IKE header is shown in Figure 3-5-1.

Figure 3-5-1 IKE Header Format

- · An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT Request's IKE_SA Initiator's SPI field value.
- · An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT Responder's IKE_SA Responder's SPI field value.
- · A Next Payload field set to Encrypted(46).
- · A Major Version field set to 2.
- · A Minor Version field set to zero.
- · An Exchange Type field set to IKE_AUTH(35).
- · A Flags field set to 0x20.
- · A Message ID field set to 0x00000002.
- · A Length field set to length of total message (header + payloads) in octets.

3.5.2. Encrypted Payload

The format of the Encrypted payload is shown in Figure 3-5-2.

Figure 3-5-2 Encrypted Payload Format

- · A Next Payload field set to Extensible Authentication (48).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- An Initialization Vector field set to a randomly chosen value whose length is equal to block length of the underlying encryption algorithm.
- · An Encrypted IKE Payloads field set to encrypted IKE Payloads.
- · A Padding field set to any value which to be a multiple of the encryption block size.
- · A Pad Length field set to the length of the Padding field.
- · An Integrity Checksum Data field set to the cryptographic checksum of the entire message.

3.5.3. Extensible Authentication Payload

The format of the Extensible Authentication payload is shown in Figure 3-5-3.

Figure 3-5-3 EAP Payload Format

- · A Next Payload field set to No Next Payload(0).
- $\cdot\,$ A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.

An EAP Message field set to following.

The format of the EAP Message is shown in Figure 3-5-4.

Figure 3-5-4 EAP Message Format

- · A Code field set to Response(2).
- · An Identifier field set to same value as IKE_AUTH Response (4)'s Identifier field value.
- $\cdot\,$ A Length field set to length of the EAP Message.
- · A Type field set to MD5-Challenge(4).
- · A Type Data field set to converted request data with the value of type field.

3.6. IKE_AUTH Response (6)

3.6.1. IKE Header

The format of the IKE header is shown in Figure 3-6-1.

Figure 3-6-1 IKE Header Format

- · An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT Request's IKE_SA Initiator's SPI field value.
- · An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT Responder's IKE_SA Responder's SPI field value.
- · A Next Payload field set to Encrypted(46).
- · A Major Version field set to 2.
- · A Minor Version field set to zero.
- · An Exchange Type field set to IKE_AUTH(35).
- · A Flags field set to 0x08.
- · A Message ID field set to 0x00000002.
- · A Length field set to length of total message (header + payloads) in octets.

3.6.2. Encrypted Payload

The format of the Encrypted payload is shown in Figure 3-6-2.

Figure 3-6-2 Encrypted Payload Format

- · A Next Payload field set to Extensible Authentication (48).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.
- · An Initialization Vector field set to a randomly chosen value whose length is equal to block length of the underlying encryption algorithm.
- · An Encrypted IKE Payloads field set to encrypted IKE Payloads.
- · A Padding field set to any value which to be a multiple of the encryption block size.
- · A Pad Length field set to the length of the Padding field.
- · An Integrity Checksum Data field set to the cryptographic checksum of the entire message.

3.6.3. Extensible Authentication Payload

The format of the Extensible Authentication payload is shown in Figure 3-6-3.

Figure 3-6-3 EAP Payload Format

- · A Next Payload field set to No Next Payload(0).
- $\cdot\,$ A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.

An EAP Message field set to following.

The format of the EAP Message is shown in Figure 3-6-4.

Figure 3-6-4 EAP Message Format

- · A Code field set to Success(3).
- · An Identifier field set to same value as IKE_AUTH Response (4)'s Identifier field value.
- $\cdot\,$ A Length field set to length of the EAP Message.

3.7. IKE_AUTH Request (7)

3.7.1. IKE Header

The format of the IKE header is shown in Figure 3-7-1.

Figure 3-7-1 IKE Header Format

- · An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT Request's IKE_SA Initiator's SPI field value.
- · An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT Responder's IKE_SA Responder's SPI field value.
- · A Next Payload field set to Encrypted(46).
- · A Major Version field set to 2.
- · A Minor Version field set to zero.
- · An Exchange Type field set to IKE_AUTH(35).
- · A Flags field set to 0x20.
- · A Message ID field set to 0x00000003.
- · A Length field set to length of total message (header + payloads) in octets.

3.7.2. Encrypted Payload

The format of the Encrypted payload is shown in Figure 3-7-2.

Figure 3-7-2 Encrypted Payload Format

- · A Next Payload field set to Authentication(39).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- $\cdot\,$ A Payload Length field set to length of the current payload.
- · An Initialization Vector field set to a randomly chosen value whose length is equal to block length of the underlying encryption algorithm.
- · An Encrypted IKE Payloads field set to encrypted IKE Payloads.
- · A Padding field set to any value which to be a multiple of the encryption block size.
- · A Pad Length field set to the length of the Padding field.
- · An Integrity Checksum Data field set to the cryptographic checksum of the entire message.

3.7.3. Authentication Payload

The format of the Authentication payload is shown in Figure 3-7-3.

Figure 3-7-3 Authentication Payload Format

- · A Next Payload field set to No Next Payload(0).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · An Auth Method set to Shared Key Message Integrity Code(2).
- · A RESERVED field set to zero.
- · An Authentication Data set to "correct authentication value".

3.8. IKE_AUTH Response (8)

3.8.1. IKE Header

The format of the IKE header is shown in Figure 3-8-1.

Figure 3-8-1 IKE Header Format

- · An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT Request's IKE_SA Initiator's SPI field value.
- · An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT Responder's IKE_SA Responder's SPI field value.
- · A Next Payload field set to Encrypted(46).
- · A Major Version field set to 2.
- · A Minor Version field set to zero.
- · An Exchange Type field set to IKE_AUTH(35).
- · A Flags field set to 0x08.
- · A Message ID field set to 0x00000003.
- · A Length field set to length of total message (header + payloads) in octets.

3.8.2. Encrypted Payload

The format of the Encrypted payload is shown in Figure 3-8-2.

Figure 3-8-2 Encrypted Payload Format

- · A Next Payload field set to Authentication(39).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- An Initialization Vector field set to a randomly chosen value whose length is equal to block length of the underlying encryption algorithm.
- · An Encrypted IKE Payloads field set to encrypted IKE Payloads.
- · A Padding field set to any value which to be a multiple of the encryption block size.
- · A Pad Length field set to the length of the Padding field.
- · An Integrity Checksum Data field set to the cryptographic checksum of the entire message.

3.8.3. Authentication Payload

The format of the Authentication payload is shown in Figure 3-8-3.

Figure 3-8-3 Authentication Payload Format

- · A Next Payload field set to Configuration(47).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · An Auth Method set to Shared Key Message Integrity Code(2).
- · A RESERVED field set to zero.
- · An Authentication Data set to "correct authentication value".

3.8.4. Configuration Payload [optional]

The format of the Configuration payload is shown in Figure 3-8-4.

Figure 3-8-4 Configuration Payload Format

- · A Next Payload field set to Security Association(33).
- · A Critical field set to zero.
- · A Payload length field set to length of the current payload.
- · A CFG Type field set to CFG REPLY(2).
- $\cdot\,$ A RESERVED field set to zero.

A Configuration Attributes field set to following.

The format of the Configuration Attributes is shown in Figure 3-8-5.

Figure 3-8-5 Configuration Attributes Format

- · A Reserved field set to zero.
- · An Attribute Type field set to unique identifier for each of the Configuration Attribute Types.
- · A Length field set to length of the Value field.
- $\cdot\,$ A Value field set to the variable-length value of this Configuration Attribute.

3.8.5. Security Association Payload

The format of the Security Association payload is shown in Figure 3-8-6.

Figure 3-8-6 Security Association Payload Format

- · A Next Payload field set to Traffic Selector Initiator(44).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.

A Proposals field set to following.

The format of the Proposal Structure is shown in Figure 3-8-7.

Figure 3-8-7 Proposal Substructure Format

- · A 0 or 2 field set to 0.
- · A RESERVED field set to zero.
- · A Proposal Length field set to length of this proposal.
- · A Proposal # field set to 1.
- · A Protocol ID field set to ESP(3).
- · A SPI Size field set to length of the sending SPI.
- · A# of Transforms field set to number of the transforms in this proposal.
- · A SPI field set to sending SPI.

A Transform field set to following (There are 3 Transforms Substructure).

The format of the Transform Structure is shown in Figure 3-8-8.

Figure 3-8-8 Transform Substructure Format

Transform Substructure #1

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Encryption Algorithm(1).
- · A RESERVED field set to zero.
- · A Transform ID field set to ENCR_3DES(3).

Transform Substructure #2

- · A 0 or 3 field set to 3.
- · A RESERVED field set to zero.
- · A Transform Length field set to length of the transform substructure including header and attributes.
- · A Transform Type field set to Integrity Algorithm(3).
- · A RESERVED field set to zero.
- · A Transform ID field set to AUTH_HMAC_SHA1_96(2).

Transform Substructure #3

- A 0 or 3 field set to 0.
- · A RESERVED field set to zero.
- A Transform Length field set to length of the transform substructure including header and attributes.
- \cdot A Transform Type field set to Extended Sequence Numbers(5).
- $\cdot\,$ A RESERVED field set to zero.
- · A Transform ID field set to No Extended Sequence Numbers(0).

3.8.6. Traffic Selectors – Initiator Payload

The format of the Traffic Selectors – Initiator payload is shown in Figure 3-8-9.

Figure 3-8-9 Traffic Selectors - Initiator Format

- · A Next Payload field set to Traffic Selectors Responder(45).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · A Number of TSs field set to 1.
- · A RESERVED field set to zero.
- · A Traffic Selectors field set to one or more individual traffic selectors.

The format of the Traffic Selectors is shown in Figure 3-8-10.

Figure 3-8-10 Traffic Selector

- · A Ts Type field set to TS_IPV6_ADDR_RANGE(8).
- · An IP Protocol ID field set to Any(0).
- $\cdot\,$ A Selector Length field set to length of the this traffic selector.
- · A Start Port field set to 0.
- · An End Port field set to 65535.
- · A Starting Address field set to the smallest address included in this Traffic Selector.
- · An Ending Address field set to the largest address included in this Traffic Selector.

3.8.7. Traffic Selectors – Responder Payload

The format of the Traffic Selectors – Responder payload is shown in Figure 3-8-11.

Figure 3-8-11 Traffic Selectors - Responder Format

- · A Next Payload field set to No Next Payload(0).
- · A Critical field set to zero.
- · A RESERVED field set to zero.
- · A Payload Length field set to length of the current payload.
- · A Number of TSs field set to 1.
- · A RESERVED field set to zero.
- · A Traffic Selectors field set to one or more individual traffic selectors.

The format of the Traffic Selectors is shown in Figure 3-8-12.

Figure 3-8-12 Traffic Selector

- · A Ts Type field set to TS_IPV6_ADDR_RANGE(8).
- · An IP Protocol ID field set to Any(0).
- · A Selector Length field set to length of the this traffic selector.
- · A Start Port field set to 0.
- · An End Port field set to 65535.
- · A Starting Address field set to the smallest address included in this Traffic Selector.
- · An Ending Address field set to the largest address included in this Traffic Selector.