IPv6 Ready Logo Phase-2 Conformance Test Specification IKEv2 **Technical Document** Revision 2.0.0a http://www.ipv6forum.org/ http://www.ipv6ready.org/ IPv6 Forum IPv6 Ready Logo Committee

MODIFICATION RECORD

Version 2.0.0 May.10, 2011

Major Version Up Items

- Change EN.I.1.2.4.1
- Change SGW.I.1.2.4.1
- Add [EN.R.P29.L2503.ADD]
- Add [SGW.R.P29.L2503.ADD]
- Add [EN.R.P86.L4030.ADD.1]
- Add [SGW.R.P86.L4030.ADD.1]
- Add [EN.R.P86.L4030.ADD.2]
- Add [SGW.R.P86.L4030.ADD.2]
- Add [EN.R.P86.L4034.ADD.1]
- Add [SGW.R.P86.L4034.ADD.1]
- Add [EN.R.P86.L4034.ADD.2]
- Add [SGW.R.P86.L4034.ADD.2]
- Add [EN.R.P57.L2663.ADD]
- Add [SGW.R.P57.L2663.ADD]
- Add [EN.R.P69.L3234.ADD]
- Add [SGW.R.P69.L3234.ADD]
- Add [EN.R.P69.L3252.ADD]
- Add [SGW.R.P69.L3252.ADD]
- Add [EN.R.P69.L3258.ADD]
- Add [SGW.R.P69.L3258.ADD]
- Add [EN.R.P69.L3260.ADD]
- Add [SGW.R.P69.L3260.ADD]
- Add [SGW.R.P116.L5437.ADD]

Version 1.1.0 Jun 8, 2010

Major Revision Up Items

- IKEv2.{EN,SGW}.{I,R}.1.1.6.1 Part F Supported PRF PRF_HMAC_SHA2_256
- IKEv2.{EN,SGW}.{I,R}.1.1.6.1 Part G Supported Integrity Algorithm AUTH_HMAC_SHA2_256_128 for IKE SA
- IKEv2.{EN,SGW}.{I,R}.1.1.6.1 Part H Supported Diffie-Hellman Group 24
- IKEv2.{EN,SGW}.{I.R}.1.1.6.2 Part G Supported Integrity Algorithm AUTH_HMAC_SHA2_256_128 for Child SA
- IKEv2.{EN,SGW}.I.1.1.6.3 Part D Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
- IKEv2.{EN,SGW}.I.1.1.6.4 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
- $\bullet \qquad \text{IKEv2.} \\ \{\text{EN,SGW}\}. \\ \text{I.1.1.6.7} \text{Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24} \\$
- IKEv2.{EN,SGW}.I.1.1.6.11 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
- IKEv2.{EN,SGW}.I.1.2.4.4 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
- IKEv2.{EN,SGW}.I.1.2.4.5 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
 IKEv2.{EN,SGW}.R.1.1.6.3 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
- IKEv2.{EN,SGW}.R.1.1.6.4 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
- IKEv2.{EN,SGW}.R.1.1.6.7 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
- IKEv2.{EN,SGW}.R.1.1.6.8 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
- IKEv2.{EN,SGW}.R.1.2.6.5 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24
 IKEv2.{EN,SGW}.R.1.2.6.6 Changed to choose Diffie-Hellman Group 14 or Diffie-Hellman Group 24

Minor Revision Up Items

- IKEv2.{EN,SGW}.R.1.1.6.9 Added IKE_SA Rekeying Failure test cases
- IKEv2.{EN,SGW}.R.1.1.4.4 Part A-D Allowed only Notify type of UNSUPPORTED_CRITICAL_PAYLOAD
- IKEv2.{EN,SGW}.{I,R}.1.1.8.1 Removed test cases for INVALID_IKE_SPI because of MAY requirement
- IKEv2.{EN,SGW}.R.1.1.4.2 Changed to use IKE_SA_INIT exchange instead of CREATE_CHILD_SA exchange
- IKEv2.{EN,SGW}.R.1.1.8.2 Removed test cases for INVALID_SYNTAX because of untestable test case
- IKEv2.{EN,SGW}.I.1.3.4.1 Removed test cases for INVALID_SPI because of MAY requirement
 IKEv2.{EN,SGW}.R.1.1.6.9 Changed to receive Notify type of NO_PROPOSAL_CHOSEN
- IKEv2.{EN,SGW}.I.1.1.6.8 Removed test cases for receiving NO_PROPOSAL_CHOSEN because of untestable test case
- IKEv2.{EN,SGW}.R.1.1.7.2 Allowed only Notify type of TS_UNACCEPTABLE
- IKEv2.{EN,SGW}.I.1.1.8.2 Removed test cases for INVALID_SELECTORS because of MAY requirement
- IKEv2.{EN,SGW}.R.1.1.8.3 Removed test cases for INVALID_SELECTORS because of MAY requirement
- IKEv2.{EN,SGW}.I.1.1.3.4 Removed test cases for INITIAL_CONTACT because of MAY requirement
 IKEv2.{EN,SGW}.R.1.1.3.3 Removed test cases for INITIAL_CONTACT because of MAY requirement
- IKEv2.{EN,SGW}.I.1.1.11.4 Changed to use IKE_AUTH exchange instead of IKE_SA_INIT exchange
- IKEv2.{EN,SGW}.I.1.1.11.5 Changed to use IKE_AUTH exchange instead of IKE_SA_INIT exchange
- IKEv2.{EN,SGW}.R.1.1.11.5 Part A and B- Changed to use IKE_AUTH exchange instead of IKE_SA_INIT exchange
- IKEv2.{EN,SGW}.R.1.1.5.1 Removed test cases for COOKIE generation because of untestable test case

- IKEv2.{EN,SGW}.R.1.1.5.2 Removed test cases for COOKIE generation because of untestable test case
- IKEv2.{EN,SGW}.R.1.1.5.3 Removed test cases for COOKIE generation because of untestable test case
- IKEv2.{EN,SGW}.R.1.1.5.4 Removed test cases for COOKIE generation because of untestable test case
- IKEv2.{EN,SGW}.R.1.2.8.1 Removed test cases for AUTHENTICATION_FAILED because of untestable test
 case
- IKEv2.{EN,SGW}.I.1.1.6.1 Part B Removed test cases using AES_CTR for IKE_SA negotiation
- IKEv2.{EN,SGW}R.1.1.6.1 Part B Removed test cases using AES_CTR for IKE_SA negotiation
- IKEv2.{EN,SGW}.I.1.2.4.7 Fixed typo
- IKEv2.EN.I.2.1.2.{2,3,4,5} Added Possible Problems
- IKEv2.{EN,SGW}.I.1.1.6.12 Changed to be more realistic test sequence
- IKEv2.{EN,SGW}.I.1.1.3.5 Removed test cases for sending liveness check because of untestable
- IKEv2.{EN,SGW}.I.1.3.1.1 Removed test cases for sending liveness check because of untestable
- IKEv2.{EN,SGW}.I.1.3.2.1 Removed test cases for sending liveness check because of untestable
- IKEv2.{EN,SGW}.I.1.3.2.2 Removed test cases for sending liveness check because of untestable
- IKEv2.{EN,SGW}.I.1.3.3.1 Removed test cases for sending liveness check because of untestable
- IKEv2.{EN,SGW}.I.1.1.3.8 Removed test cases for sending liveness check because of untestable
- IKEv2.{EN,SGW}.I.1.2.6.1 Removed test cases for exchange collision because of untestable
- IKEv2.{EN,SGW}.I.1.2.6.2 Removed test cases for exchange collision because of untestable
- IKEv2.{EN,SGW}.I.1.2.6.7 Removed test cases for exchange collision because of untestable
- IKEv2.{EN,SGW}.I.1.2.6.8 Removed test cases for exchange collision because of untestable
- IKEv2.{EN,SGW}.I.1.2.6.9 Removed test cases for exchange collision because of untestable
- IKEv2.{EN,SGW}.I.1.2.6.10 Removed test cases for exchange collision because of untestable
- IKEv2.{EN,SGW}.I.1.2.6.11 Removed test cases for exchange collision because of untestable
- IKEv2.{EN,SGW}.I.1.2.6.12 Removed test cases for exchange collision because of untestable
- $\bullet \qquad IKEv2.\{EN,\!SGW\}.I.1.2.6.13 Removed \ test \ cases \ for \ exchange \ collision \ because \ of \ untestable$
- $\bullet \qquad \text{IKEv2.} \\ \text{EN,SGW} \\ \text{J.1.1.2.6.14} \text{Removed test cases for exchange collision because of untestable}$
- IKEv2.{EN,SGW}.I.1.2.6.15 Removed test cases for exchange collision because of untestable
- IKEv2.{EN,SGW}.I.1.1.3.7 Removed test cases for CHILD_SA deletion because of untestable
- IKEv2.SGW.I.1.1.6.10 Fixed typo
- IKEv2.{EN,SGW}.I.1.2.3.6 Changed to use rekeying IKE_SA instead of rekeying CHILD_SA
- IKEv2.{EN,SGW}.R.1.2.6.8 -
- IKEv2.{EN,SGW}.I.1.2.3.8 Changed to allow both the new CHILD_SA and the old CHILD_SA
- IKEv2.{EN,SGW}.R.1.2.5.6 Changed to allow both the new CHILD_SA and the old CHILD_SA
- IKEv2.{EN,SGW}.I.1.2.6.5 Changed to allow both the new duplicated IKE_SA and the old IKE_SA
- IKEv2.{EN,SGW}.{I,R}.1.1.10.1 Part A, B, and C Support 3 types of ID Types
- IKEv2.{EN,SGW}.{I,R}.1.1.10.2 Part A, B, and C Support 3 types of ID Types
- $\bullet \qquad \text{IKEv2.} \\ \{\text{EN,SGW}\}. \\ \{\text{I,R}\}. \\ 1.1.10.3 \text{ Part A, B, and C Support 3 types of ID Types} \\$
- (currently not updated) add IKEv2.{EN,SGW}.R.1.2.8.1 Part C
- (currently not updated) change certificate test cases

Version 1.0.3

Sep. 14, 2009

- IKEv2.{EN,SGW}.{I,R}.1.1.6.2 Part E Permitted to omit transform when the integrity algorithm is NONE
- IKEv2.{EN,SGW}.I.1.1.5.[2-3], IKEv2.{EN,SGW}.I.1.1.6.{7,11}, IKEv2.{EN,SGW}.R.1.1.5.[3-4], IKEv2.{EN,SGW}.R.1.1.6.[7-8] Updated INVALID_KE_PAYLOAD test procedure to be realistic
- IKEv2.{EN,SGW}.R.1.1.6.7 Mandated to transmit INVALID_KE_PAYLOAD since it is required as MUST in RFC 4306
- IKEv2.{EN,SGW}.I.1.1.6.7 Changed requirements from BASIC to ADVANCED since these tests requires NUT
 to transmit multiple transforms and to support 2048 MODP Group
- IKEv2.{EN,SGW}.I.1.1.6.11 Changed requirements from BASIC to ADVANCED since these tests requires NUT to transmit multiple transforms, to support 2048 MODP Group and to support PFS
- IKEv2.{EN,SGW}.I.1.2.3.7, IKEv2.{EN,SGW}.R.1.2.5.5 Changed requirements from BASIC to ADVANCED since these tests requires NUT to support PFS

Version 1.0.2

Jun. 02, 2009

- Requirements Unsupport send / receive ID_IPV4_ADDR / ID_FQDN / ID_RFC822_ADDR function by mandating to support ID_IPV6_ADDR
- {EN,SGW}.I.1.1.9.1, {EN,SGW}.I.1.1.9.2, {EN,SGW}.R.1.1.9.1, {EN,SGW}.R.1.1.9.2 Remove send / receive ID_IPV4_ADDR / ID_FQDN / ID_RFC822_ADDR test cases by mandating to support ID_IPV6_ADDR
- Function List, {EN,SGW}.I.1.2.5.2 Clarify Additional CHILD_SA function is ADVANCED
- EN.R.1.1.7.2 Fix editorial typo
- {EN,SGW}.R.1.3.1.1 Correct test Purpose
- {EN,SGW}.I.1.2.3.6 Fix editorial typo
- EN.I.2.1.1.1, EN.I.2.1.1.2, EN.R.2.1.1.1, EN.R.2.1.1.2 Fix editorial typo

Version 1.0.1

Apr. 15, 2009

- IKEv2.EN.I.1.1.5.2, IKEv2.SGW.1.1.5.2, IKEv2.EN.R.1.1.5.3, IKEv2.SGW.R.1.1.5.3, IKEv2.EN.R.1.1.5.4, IKEv2.SGW.R.1.1.5.4 Update acceptable packets and check establishment of IKE_SA
- IKEv2.EN.I.1.1.5.3, IKEv2.SGW.I.1.1.5.3 Add new test cases for Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Responder

Version 1.0.0

Dec. 11, 2008
• Initial release

ACKNOWLEDGMENTS

The IPv6 Forum would like to acknowledge the efforts of the following organizations in the development of this test suite.

Authors:

Yokogawa Electric Corporation Nippon Telegraph and Telephone Corporation (NTT)

Commentators:

NTT Advanced Technology Corporation (NTT-AT) University of New Hampshire - InterOperability Lab IRISA-INRIA

Note:

Development of this document was supported in part by a grant from NICT.

INTRODUCTION

Overview

TAHI Project is the joint effort formed with the objective of developing and providing the verification technology for IPv6.

The growth process of IPv4 was the history of encountering various kinds of obstacles and conquering such obstacles. However, once the position as infrastructure was established, it is not allowed to repeat the same history.

This is a reason why the verification technology is essential for IPv6 deployment.

We research and develop conformance tests and interoperability tests for IPv6.

We closely work with the KAME project and USAGI project.

We help activities of these projects in the quality side by offering the verification technology we develop in TAHI project and improve the development efficiency.

We open the results and fruits of the project to the public for FREE.

Any developer concerned with IPv6 can utilize the results and fruits of TAHI project freely. Free software plays an important role in progress of the Internet. We believe that providing the verification technology for FREE contributes to advances of IPv6.

Besides the programs, the specifications and criteria of verification will be included in the Package.

Abbreviations and Acronyms

TN: Testing Node
TH: Testing Host
TR: Testing Router
NUT: Node Under Test
HUT: Host Under Test
RUT: Router Under Test

IKE: Internet Key Exchange (IKEv2) Protocol

EN: End-Node
SGW: Security-Gateway
PSK: Pre-Shared Key
AUTH: Authentication Pay

AUTH: Authentication Payload
CERT: Certificate Payload
CERTREQ: Certificate Request Payload
Configuration Payload

D: Delete Payload
E: Encrypted Payload

EAP: Extensible Authentication Payload

HDR: IKE Header

IDi: Identification - Initiator PayloadIDr: Identification - Responder Payload

KE: Key Exchange PayloadNi: Nonce - Initiator PayloadNr: Nonce - Responder Payload

N: Notify Payload

SA: Security Association Payload
TSi: Traffic Selector - Initiator Payload
TSr: Traffic Selector - Responder Payload

V: Vendor ID Payload

TEST ORGANIZATION

This document organizes tests by Section based on related test methodology or goals. Each group begins with a brief set of comments pertaining to all tests within that group. This is followed by a series of description blocks; each block describes a single test. The format of the description block is as follows:

Test Label: The test label and title comprise the first line of the test block. The test label is composed

by concatenating the short test suite name, the section number, the group number, and the test number within the group. These elements are separated by periods. The Test Number

is the section, group and test number, also separated by periods.

Purpose: The Purpose is a short statement describing what the test attempts to achieve. It is usually

phrased as a simple assertion of the feature or capability to be tested.

References: The References section lists cross-references to the specifications and documentation that

might be helpful in understanding and evaluating the test and results.

Resource The Resource Requirements section specifies the software, hardware, and test equipment

Requirements: that will be needed to perform the test.

Test Setup: The Test Setup section describes the configuration of all devices prior to the start of the

test. Different parts of the procedure may involve configuration steps that deviate from what is given in the test setup. If a value is not provided for a protocol parameter, then the

protocol's default is used for that parameter.

Procedure: This section of the test description contains the step-by-step instructions for carrying out

the test. These steps include such things as enabling interfaces, unplugging devices from the network, or sending packets from a test station. The test procedure also cues the tester to make observations, which are interpreted in accordance with the observable results given

for that test part.

Observable Results: This section lists observable results that can be examined by the tester to verify that the

NUT is operating properly. When multiple observable results are possible, this section provides a short discussion on how to interpret them. The determination of a pass or fail for each test is usually based on how the NUT's behavior compares to the results described in

this section.

Possible Problems: This section contains a description of known issues with the test procedure, which may

affect test results in certain situations.

REFERENCES

The following documents are referenced in this text:

- RFC 4306 Internet Key Exchange (IKEv2) Protocol, December, 2005.
- RFC 4307 Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2), December, 2005
- RFC 4718 IKEv2 Clarifications and Implementation Guidelines, October, 2006

TABLE OF CONTENTS

MODIFICATION RECORD	1
ACKNOWLEDGMENTS	3
INTRODUCTION	4
TEST ORGANIZATION	5
REFERENCES	6
TABLE OF CONTENTS	7
Requirements	18
EQUIPMENT TYPE	
FUNCTION LIST	
Common Topology	20
COMMON TOPOLOGY FOR END-NODE: END-NODE TO END-NODE	20
COMMON TOPOLOGY FOR END-NODE: END-NODE TO SGW	2 1
COMMON TOPOLOGY FOR SGW: SGW TO SGW	27
COMMON TOPOLOGY FOR SGW: SGW TO END-NODE	23
Common Configuration for NUT	24
COMMON CONFIGURATION FOR END-NODE: END-NODE TO END-NODE	24
COMMON CONFIGURATION FOR END-NODE: END-NODE TO SGW	25
COMMON CONFIGURATION FOR SGW: SGW TO SGW	26
COMMON CONFIGURATION FOR SGW: SGW TO END-NODE	27
Common Packets	<i>28</i>
IKE_SA_INIT MESSAGES	
Common Packet #1: IKE_SA_INIT request Common Packet #2: IKE_SA_INIT response	
IKE AUTH Messages	
Common Packet #3: IKE_AUTH request for Transport Mode	.32
Common Packet #4: IKE_AUTH response for Transport Mode	
Common Packet #5: IKE_AUTH request for Tunnel Mode Common Packet #6: IKE_AUTH response for Tunnel Mode	.36 39
CREATE_CHILD_SA Messages for Generating CHILD_SA	
Common Packet #7: CREATE_CHILD_SA request for Generating CHILD_SA for Transport Mode Common Packet #8: CREATE_CHILD_SA response for Generating CHILD_SA for Transport Mode	.42
Common Packet #9: CREATE_CHILD_SA request for Generating CHILD_SA for Tunnel Mode	
CREATE_CHILD_SA MESSAGES FOR REKEYING IKE_SA Common Packet #11: CREATE_CHILD_SA request for Rekeying IKE_SA Common Packet #12: CREATE_CHILD_SA response for Rekeying IKE_SA	.50
CREATE_CHILD_SA MESSAGES FOR REKEYING CHILD_SA	.54 .56 .58
INFORMATIONAL MESSACES	6

Common Packet #1/: INFORMATIONAL request	
Common Packet #18: INFORMATIONAL response	
ICMPv6 Echo Requests	64
Common Packet #19: ICMPv6 Echo Request for End-Node to End-Node test cases	
Common Packet #20: ICMPv6 Echo Request for End-Node to SGW test cases	
Common Packet #21: ICMPv6 Echo Request for SGW to SGW test cases	
•	
ICMPv6 Echo Replys.	66
Common Packet #23: ICMPv6 Echo Reply for End-Node to End-Node test cases	
Common Packet #24: ICMPv6 Echo Reply for End-Node to SGW test cases	66
Common Packet #25: ICMPv6 Echo Reply for SGW to SGW test cases	
Common Packet #26: ICMPv6 Echo Reply for SGW to End-Node test cases	
Section 1. End Node	
Section 1.1. Initiator	67
Section 1.1.1. Endpoint-to-Endpoint Transport	67
Group 1. The Initial Exchanges	67
GROUP 1.1. HEADER AND PAYLOAD FORMATS Test IKEv2.EN.I.1.1.1: Sending IKE_SA_INIT request	
Test IKEV2.EN.I.1.1.1.1: Sending IKE_SA_INT1 request	
Test IKEv2.EN.I.1.1.1.3: Use of CHILD SA	
-	
GROUP 1.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.EN.I.1.1.2.1: Retransmissions of IKE_SA_INIT requests	
Test IKEv2.EN.I.1.1.2.2: Stop of retransmission of IKE_SA_INIT requests Test IKEv2.EN.I.1.1.2.3: Retransmissions of IKE_AUTH requests	
Test IKEv2.EN.I.1.1.2.3: Retransmissions of IKE_AUTH requests Test IKEv2.EN.I.1.1.2.4: Stop of retransmission of IKE_AUTH requests	
GROUP 1.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	95
Test IKEv2.EN.I.1.1.3.1: State Synchronization with ICMP messages	
Test IKEv2.EN.I.1.1.3.2: State Synchronization with IKE messages	
Test IKEv2.EN.I.1.1.3.3: Close connections when repeated attempts fail	100
Test IKEv2.EN.I.1.1.3.4: Close connections when receiving INITIAL_CONTACT	
Test IKEv2.EN.I.1.1.3.5: Sending Liveness check	
Test IKEv2.EN.I.1.1.3.7: Sending Delete Payload for CHILD_SA	
Test IKEv2.EN.I.1.1.3.7: Sending Delete Fayload for CHILD_SA Test IKEv2.EN.I.1.1.3.8: Sending Liveness check with unprotected messages	
•	
GROUP 1.4. VERSION NUMBERS AND FORWARD COMPATIBILITY	
Test IKEv2.EN.I.1.1.4.1: Unrecognized payload types and Critical bit is not set	
Test IKEv2.EN.I.1.1.4.2: Unrecognized payload types and Critical bit is set	114
GROUP 1.5. COOKIES	
Test IKEv2.EN.I.1.1.5.1: Retrying IKE_SA_INIT request with a Notify payload of type (
TO A TOWN	
Test IKEv2.EN.I.1.1.5.2: Interaction of COOKIE and INVALID_KE_PAYLOAD	
Test IKEv2.EN.I.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD with u Responder	
GROUP 1.6. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	131
Test IKEv2.EN.I.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA	131
Test IKEv2.EN.I.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA	
Test IKEv2.EN.I.1.1.6.3: Sending Multiple Transforms for IKE_SA	
Test IKEv2.EN.I.1.1.6.4: Sending Multiple Proposals for IKE_SA	
Test IKEv2.EN.I.1.1.6.5: Sending Multiple Transforms for CHILD_SA	
Test IKEv2.EN.I.1.1.6.6: Sending Multiple Proposals for CHILD_SA	
Test IKEv2.EN.I.1.1.6.7: Receipt of INVALID_KE_PAYLOAD	
Test IKEv2.EN.I.1.1.6.8: Receipt of NO_PROPOSAL_CHOSEN	152

Test IKEv2.EN.I.1.1.6.9: Response with inconsistent SA proposal for IKE SA	
Test IKE 72:E11.1.1.1.0.5. Response with meonsistent 511 proposal for IKE_511	153
Test IKEv2.EN.I.1.1.6.10: Response with inconsistent proposal for CHILD_SA	155
Test IKEv2.EN.I.1.1.6.11: Receipt of INVALID_KE_PAYLOAD in Initial Exchange	158
Test IKEv2.EN.I.1.1.6.12: Creating an IKE_SA without a CHILD_SA	
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	
Test IKEv2.EN.I.1.1.7.1: Narrowing the range of members of the set of traffic selectors	162
GROUP 1.8. ERROR HANDLING	165
Test IKEv2.EN.I.1.1.8.1: INVALID IKE SPI	
Test IKEv2.EN.I.1.1.8.2: INVALID SELECTORS	
-	
GROUP 1.10 AUTHENTICATION OF THE IKE_SA	
Test IKEv2.EN.I.1.1.10.1: Sending CERT Payload	
Test IKEv2.EN.I.1.1.10.2: Sending CERTREQ Payload	
Test IKEv2.EN.I.1.1.10.3: RSA Digital Signature	
Test IKEv2.EN.I.1.1.10.4: HEX string PSK	175
GROUP 1.11. INVALID VALUES	175
Test IKEv2.EN.I.1.11.1: Non zero RESERVED fields in IKE SA INIT response	
Test IKEv2.EN.I.1.1.11.1. Non zero RESERVED fields in IKE_AUTH response	
Test IKEv2.EN.I.1.1.11.2: Non zero KESER v ED neus in IKE_AU 111 response	
Test IKEv2.EN.I.1.11.14: Unrecognized Notify Message Type of Error	
Test IKEv2.EN.I.1.1.11.5: Unrecognized Notify Message Type of Status	185
Group 2. The CREATE_CHILD_SA Exchange	187
GROUP 2.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.EN.I.1.2.1.1: Sending CREATE_CHILD_SA request	187
GROUP 2.2. USE OF RETRANSMISSION TIMERS	200
Test IKEv2.EN.I.1.2.2.1: Retransmissions of CREATE_CHILD_SA requests	
Test IKEv2.EN.I.1.2.2.2: Stop of retransmission of CREATE_CHILD_SA requests	
GROUP 2.3. REKEYING CHILD_SAS USING A CREATE_CHILD_SA EXCHANGE	206
Test IKEv2.EN.I.1.2.3.1: Close the replaced CHILD_SA	206
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA	206 209
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires	206 209 213
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform	206 209 213 215
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA. Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal.	206 209 213 215 219
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA. Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal. Test IKEv2.EN.I.1.2.3.6: Rekeying Failure.	206 209 213 215 219
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA. Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal.	206 209 213 215 219
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA. Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal. Test IKEv2.EN.I.1.2.3.6: Rekeying Failure.	206 209 213 215 219 221
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA. Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal. Test IKEv2.EN.I.1.2.3.6: Rekeying Failure. Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy. Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA.	206 209 213 215 219 221 223
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA. Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal. Test IKEv2.EN.I.1.2.3.6: Rekeying Failure. Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy. Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA. GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	206 209 213 215 219 221 223 227
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA. Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal. Test IKEv2.EN.I.1.2.3.6: Rekeying Failure. Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy. Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA. GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE. Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA.	206 209 213 215 219 221 223 227
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA	206 209 213 215 219 221 223 227 230 230
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires	206 209 213 215 219 221 223 227 230 230 236
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform	206209213215219221223227230230236238
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal	206209213215219221223227230230236238238
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA	206209213215219221223227230230236238246
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal	206209213215219221223227230230236238246
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA	206209213215219221223227230230236236238246249
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.6: Use of the rekeying the IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA Exchanges	206209213215219221223227230236236238246249
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.5: Changing PRFs when rekeying the IKE_SA	206209213215219221223227230236236238246249249
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA	206209213215219221223230230236236236246249249252
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA. Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA GROUP 2.6. EXCHANGE COLLISIONS	206209213215219221223227230236236238246249249252
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE. Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES. Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA. GROUP 2.6. EXCHANGE COLLISIONS Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close	
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA GROUP 2.6. EXCHANGE COLLISIONS Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close Test IKEv2.EN.I.1.2.6.2: Simultaneous IKE_SA Close	
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE. Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA. Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES. Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA GROUP 2.6. EXCHANGE COLLISIONS	
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE. Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA Exchanges. Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA GROUP 2.6. EXCHANGE COLLISIONS Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close Test IKEv2.EN.I.1.2.6.3: Simultaneous CHILD_SA Rekeying. Test IKEv2.EN.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission	
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.5: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	
Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires. Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform. Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.3.6: Rekeying Failure Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE. Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA Exchanges. Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA reques Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA GROUP 2.6. EXCHANGE COLLISIONS Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close Test IKEv2.EN.I.1.2.6.3: Simultaneous CHILD_SA Rekeying. Test IKEv2.EN.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission	

Test IKEv2.EN.I.1.2.6.8: Closing a New CHILD_SA	280
Test IKEv2.EN.I.1.2.6.9: Rekeying a New CHILD_SA	
Test IKEv2.EN.I.1.2.6.10: Rekeying an IKE_SA with half-open CHILD_SAs	282
Test IKEv2.EN.I.1.2.6.11: Rekeying a CHILD_SA while rekeying an IKE_SA	283
Test IKEv2.EN.I.1.2.6.12: Rekeying an IKE_SA with half-closed CHILD_SAs	284
Test IKEv2.EN.I.1.2.6.13: Closing a CHILD_SA while rekeying an IKE_SA	285
Test IKEv2.EN.I.1.2.6.14: Closing an IKE_SA while rekeying an IKE_SA	
Test IKEv2.EN.I.1.2.6.15: Rekeying an IKE SA while Closing an IKE SA	
GROUP 2.7. NON ZERO RESERVED FIELDSTest IKEv2.EN.I.1.2.7.1: Non zero RESERVED fields in CREATE CHILD SA response	
Test IKEV2.EN.1.1.2.7.1; Non zero KESEKVED neids in CKEATE_CHILD_SA Tesponse	200
Group 3. The INFORMATIONAL Exchange	
GROUP 3.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.EN.I.1.3.1.1: Sending INFORMATIONAL Exchange	291
GROUP 3.2. USE OF RETRANSMISSION TIMERS	292
Test IKEv2.EN.I.1.3.2.1: Retransmission of INFORMATIONAL request	
Test IKEv2.EN.I.1.3.2.2: Stop of retransmission of INFORMATIONAL request	
•	
GROUP 3.3. NON ZERO RESERVED FIELDS	
Test IKEv2.EN.I.1.3.3.1: Non zero RESERVED fields in INFORMATIONAL response	294
GROUP 3.4. ERROR HANDLING	296
Test IKEv2.EN.I.1.3.4.1: INVALID_SPI	296
_	
Section 1.1.2. Endpoint to Security Gateway Tunnel	297
Group 1. The Initial Exchanges	207
Group 1. The Inuiai Exchanges	
GROUP 1.1. HEADER AND PAYLOAD FORMATS	297
Test IKEv2.EN.I.2.1.1.1: Sending IKE_AUTH request	297
Test IKEv2.EN.I.2.1.1.2: Use of CHILD_SA	
GROUP 1.2. REQUESTING AN INTERNAL ADDRESS ON A REMOTE NETWORK	210
Test IKEv2.EN.I.2.1: Sending CFG_REQUEST	
Test IKEv2.EN.I.2.1.2.2: Receipt of CFG_REPLY	
Test IKEv2.EN.I.2.1.2.3: Non zero RESERVED fields in Configuration Payload	
Test IKEv2.EN.I.2.1.2.4: Receipt of IKE_AUTH response without CFG_REPLY	
Test IKEv2.EN.I.2.1.2.5: Receipt of unrecognized Configuration Attributes	322
Section 1.2. Responder	325
•	
Section 1.2.1. Endpoint-to-Endpoint Transport	325
	225
Group 1. The Initial Exchanges	323
GROUP 1.1. HEADER AND PAYLOAD FORMATS	326
Test IKEv2.EN.R.1.1.1: Sending IKE_SA_INIT response	
Test IKEv2.EN.R.1.1.1.2: Sending IKE_AUTH response	
Test IKEv2.EN.R.1.1.1.3: Use of CHILD_SA	
_	
GROUP 1.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.EN.R.1.1.2.1: Receipt of retransmitted IKE_SA_INIT request	
Test IKEv2.EN.R.1.1.2.2: Receipt of retransmitted IKE_AUTH request	347
GROUP 1.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	349
Test IKEv2.EN.R.1.1.3.1: State Synchronization with ICMP messages	
Test IKEv2.EN.R.1.1.3.2: State Synchronization with IKE messages	351
Test IKEv2.EN.R.1.1.3.3: Close connections when receiving INITIAL_CONTACT	354
Test IKEv2.EN.R.1.1.3.4: Receiving Liveness check	355
Test IKEv2.EN.R.1.1.3.5: Receiving Delete Payload for IKE_SA	357
Test IKEv2.EN.R.1.1.3.6: Receiving Delete Payload for CHILD_SA	
Ţ ,	
GROUP 1.4. VERSION NUMBERS AND FORWARD COMPATIBILITY	
LANGER BY A BUNK LEAL BY RACCIDE AT 9 DIGDAY MIDAY VARCIAN DIMPAY	101

/ ONOM	
Test IKEv2.EN.R.1.1.4.2: Receipt of a higher major version number	
Test IKEv2.EN.R.1.1.4.3: Unrecognized payload types and critical bit is not set	367
Test IKEv2.EN.R.1.1.4.4: Unrecognized payload types and critical bit is set	
Test IKEv2.EN.R.1.1.4.5: Invalid Order Payloads	375
GROUP 1.5. COOKIES	25/
Test IKEv2.EN.R.1.1.5.1: Cookies.	
Test IKEv2.EN.R.1.1.5.1: Cookies	
Test IKEv2.EN.R.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD	
Test IKEv2.EN.R.1.1.5.4: Interaction of COOKIE and INVALID_KE_PAYLOAD with un	-
Initiator	379
GROUP 1.6. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	380
Test IKEv2.EN.R.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA	380
Test IKEv2.EN.R.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA	385
Test IKEv2.EN.R.1.1.6.3: Receiving Multiple Transforms for IKE_SA	
Test IKEv2.EN.R.1.1.6.4: Receiving Multiple Proposals for IKE_SA	
Test IKEv2.EN.R.1.1.6.5: Receiving Multiple Transforms for CHILD_SA	
Test IKEv2.EN.R.1.1.6.6: Receiving Multiple Proposals for CHILD_SA	
Test IKEv2.EN.R.1.1.6.7: Sending INVALID KE PAYLOAD	
Test IKEv2.EN.R.1.1.6.8: Sending INVALID_KE_PAYLOAD in Initial Exchange	
Test IKEv2.EN.R.1.1.6.9: Creating an IKE_SA without a CHILD_SA	
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	
Test IKEv2.EN.R.1.1.7.1: Narrowing Traffic Selectors	
Test IKEv2.EN.R.1.1.7.2: TS_UNACCEPTABLE	
Test IKEv2.EN.R.1.1.7.3: Narrowing Traffic Selectors from multiple Traffic Selector	420
GROUP 1.8. ERROR HANDLING	424
Test IKEv2.EN.R.1.1.8.1: INVALID IKE SPI	
Test IKEv2.EN.R.1.1.8.2: INVALID SYNTAX	
Test IKEv2.EN.R.1.1.8.3: INVALID SELECTORS	
GROUP 1.10. AUTHENTICATION OF THE IKE_SA	
Test IKEv2.EN.R.1.1.10.1: Sending Certificate Payload	
Test IKEv2.EN.R.1.1.10.2: Sending Certificate Request Payload	
Test IKEv2.EN.R.1.1.10.3: RSA Digital Signature	
Test IKEv2.EN.R.1.1.10.4: HEX string PSK	435
GROUP 1.11 INVALID VALUES	437
Test IKEv2.EN.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request	437
Test IKEv2.EN.R.1.1.11.2: Non zero RESERVED fields in IKE AUTH request	
Test IKEv2.EN.R.1.1.11.3: Version bit is set	441
Test IKEv2.EN.R.1.1.11.4: Response bit is set	
Test IKEv2.EN.R.1.1.11.5: Unrecognized Notify Message Type	
· · · · · · · · · · · · · · · · · · ·	
Group 2. The CREATE_CHILD_SA Exchange	446
GROUP 2.1. HEADER AND PAYLOAD FORMATS	446
Test IKEv2.EN.R.1.2.1.1: Receipt of CREATE_CHILD_SA request	
GROUP 2.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.EN.R.1.2.2.1: Receipt of retransmitted CREATE_CHILD_SA request	457
GROUP 2.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	459
Test IKEv2.EN.R.1.2.3.1: Receiving Delete Payload for Multiple CHILD_SA	
GROUP 2.4. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	
Test IKEv2.EN.R.1.2.4.1: Sending NO_PROPOSAL_CHOSEN	463
GROUP 2.5. REKEYING CHILD_SA USING A CREATE_CHILD_SA EXCHANGE	466
Test IKEv2.EN.R.1.2.5.1: Close the replaced CHILD_SA	
Test IKEv2.EN.R.1.2.5.2: Use of the new CHILD_SA	469
Test IKEv2.EN.R.1.2.5.3: Receiving Multiple Transform	
Test IKEv2.EN.R.1.2.5.4: Receiving Multiple Proposal	

Test IKEv2.EN.R.1.2.5.5: Perfect Forward Secrecy	480
Test IKEv2.EN.R.1.2.5.6: Use of the old CHILD_SA	
GROUP 2.6. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	486
Test IKEv2.EN.R.1.2.6.1: Sending CREATE_CHILD_SA response	
Test IKEv2.EN.R.1.2.6.2: Receipt of cryptographically valid message on the old SA	
Test IKEv2.EN.R.1.2.6.3: Receipt of cryptographically valid message on the new SA	
Test IKEv2.EN.R.1.2.6.4: Close the replaced IKE_SA	
Test IKEv2.EN.R.1.2.6.5: Receiving Multiple Transform	
Test IKEv2.EN.R.1.2.6.6: Receiving Multiple Proposal	
Test IKEv2.EN.R.1.2.6.7: Changing PRFs when rekeying the IKE_SA	
Test IKEv2.EN.R.1.2.6.8: D-H transform NONE when rekeying the IKE_SA	
Test IKEv2.EN.R.1.2.6.9: Rekeying Failure	508
GROUP 2.7. CREATING NEW CHILD_SAS USING A CREATE_CHILD_SA EXCHANGE	511
Test IKEv2.EN.R.1.2.7.1: Receipt of cryptographically valid message on the new SA	
GROUP 2.8. ERROR HANDLING	E 16
Test IKEv2.EN.R.1.2.8.1: AUTHENTICATION_FAILED	
-	
GROUP 2.9. NON ZERO RESERVED FIELDS	
Test IKEv2.EN.R.1.2.9.1: Non zero RESERVED fields in CREATE_CHILD_SA request	517
Group 3. The INFORMATIONAL Exchange	519
GROUP 3.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.EN.R.1.3.1.1: Sending INFORMATIONAL response	519
GROUP 3.2. USE OF RETRANSMISSION TIMERS	523
Test IKEv2.EN.R.1.3.2.1: Receipt of retransmitted INFORMATIONAL request	523
GROUP 3.3. NON ZERO RESERVED FIELDS	53 6
Test IKEv2.EN.R.1.3.3.1: Non RESERVED fields in INFORMATIONAL request	
•	
Section 1.2.2. Endpoint to Security Gateway Tunnel	550
Group 1. The Initial Exchanges	550
-	
GROUP 1.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.EN.R.2.1.1.1: Sending IKE_AUTH response	
Test IKEv2.EN.R.2.1.1.2: Use of CHILD_SA	560
Section 2. Security Gateway	562
Section 2. Security Gateway	302
Section 2.1. Initiator	562
Section 2.1.1. Security Gateway to Security Gateway Tunnel	562
Group 1. The Initial Exchanges	562
•	
GROUP 1.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.SGW.I.1.1.1.1: Sending IKE_SA_INIT request	563
Test IKEv2.SGW.I.1.1.1.2: Sending IKE_AUTH request	
Test IKEv2.SGW.I.1.1.1.3: Use of CHILD_SA	579
GROUP 1.2. USE OF RETRANSMISSION TIMERS	581
Test IKEv2.SGW.I.1.1.2.1: Retransmissions of IKE_SA_INIT requests	581
Test IKEv2.SGW.I.1.1.2.2: Stop of retransmission of IKE_SA_INIT requests	583
Test IKEv2.SGW.I.1.1.2.3: Retransmissions of IKE_AUTH requests	
Test IKEv2.SGW.I.1.1.2.4: Stop of retransmission of IKE_AUTH requests	587
GROUP 1.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	520
Test IKEv2.SGW.I.1.1.3.1: State Synchronization with ICMP messages	
Test IKEv2.SGW.I.1.1.3.2: State Synchronization with IKE messages	
Test IKEv2.SGW.I.1.1.3.3: Close connections when repeated attempts fail	
Test IKEv2.SGW.I.1.1.3.4: Close connections when receiving INITIAL_CONTACT	
Test IKEv2.SGW.I.1.1.3.5: Sending Liveness check	

T OTTOM	
Test IKEv2.SGW.I.1.1.3.6: Sending Delete Payload for IKE_SA	599
Test IKEv2.SGW.I.1.1.3.7: Sending Delete Payload for CHILD_SA	601
Test IKEv2.SGW.I.1.1.3.8: Sending Liveness check with unprotected messages	
•	
GROUP 1.4. VERSION NUMBERS AND FORWARD COMPATIBILITY	
Test IKEv2.SGW.I.1.1.4.1: Unrecognized payload types and critical bit is not set	
Test IKEv2.SGW.I.1.1.4.2: Unrecognized payload types and critical bit is set	610
GROUP 1.5. COOKIES	617
Test IKEv2.SGW.I.1.1.5.1: Retrying IKE_SA_INIT request with a Notify payload of type	COOKIE
Test IKEv2.SGW.I.1.1.5.2: Interaction of COOKIE and INVALID_KE_PAYLOAD	620
Test IKEv2.SGW.I.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD with	
unoptimized Responder	624
•	
GROUP 1.6. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	
Test IKEv2.SGW.I.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA	
Test IKEv2.SGW.I.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA	
Test IKEv2.SGW.I.1.1.6.3: Sending Multiple Transforms for IKE_SA	
Test IKEv2.SGW.I.1.1.6.4: Sending Multiple Proposals for IKE_SA	
Test IKEv2.SGW.I.1.1.6.5: Sending Multiple Transforms for CHILD_SA	
Test IKEv2.SGW.I.1.1.6.6: Sending Multiple Proposals for CHILD_SA	
Test IKEv2.SGW.I.1.1.6.7: Receipt of INVALID_KE_PAYLOAD	
Test IKEv2.SGW.I.1.1.6.8: Receipt of NO_PROPOSAL_CHOSEN	
Test IKEv2.SGW.I.1.1.6.9: Response with inconsistent SA proposal for IKE_SA	
Test IKEv2.SGW.I.1.1.6.10: Response with inconsistent proposal for CHILD_SA	
Test IKEv2.SGW.I.1.1.6.11: Receipt of INVALID_KE_PAYLOAD in Initial Exchange	
Test IKEv2.SGW.I.1.1.6.12: Creating an IKE_SA without a CHILD_SA	657
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	659
Test IKEv2.SGW.I.1.1.7.1: Narrowing the range of members of the set of traffic selectors.	
GROUP 1.8. ERROR HANDLING	
Test IKEv2.SGW.I.1.1.8.1: INVALID_IKE_SPI	
Test IKEv2.SGW.I.1.1.8.2: INVALID_SELECTORS	
GROUP 1.10 AUTHENTICATION OF THE IKE_SA	664
Test IKEv2.SGW.I.1.1.10.1: Sending CERT Payload	664
Test IKEv2.SGW.I.1.1.10.2: Sending CERTREQ Payload	667
Test IKEv2.SGW.I.1.1.10.3: RSA Digital Signature	669
Test IKEv2.SGW.I.1.1.10.4: HEX string PSK	673
GROUP 1.11 INVALID VALUES	675
Test IKEv2.SGW.I.1.1.11: Non zero RESERVED fields in IKE_SA_INIT response	
Test IKEv2.SGW.I.1.1.11.2: Non zero RESERVED fields in IKE_AUTH response	
Test IKEv2.SGW.I.1.1.11.3: Version bit is set	
Test IKEv2.SGW.I.1.1.11.4: Unrecognized Notify Message Type of Error	
Test IKEv2.SGW.I.1.1.11.5: Unrecognized Notify Message Type of Status	
Test IKE 12.50 W.I. 1.11.11.5. Officeognized Notify Message Type of Status	
Group 2. The CREATE_CHILD_SA Exchange	685
GROUP 2.1. HEADER AND PAYLOAD FORMATS	(95
Test IKEv2.SGW.I.1.2.1.1: Sending CREATE_CHILD_SA request	
·	
GROUP 2.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.SGW.I.1.2.2.1: Retransmissions of CREATE_CHILD_SA requests	699
Test IKEv2.SGW.I.1.2.2.2: Stop of retransmission of CREATE_CHILD_SA requests	702
GROUP 2.3. REKEYING CHILD_SA USING A CREATE_CHILD_SA EXCHANGE	705
Test IKEv2.SGW.I.1.2.3.1: Close the replaced CHILD_SA	
Test IKEv2.SGW.I.1.2.3.1: Close the replaced CHILD_SA Test IKEv2.SGW.I.1.2.3.2: Use of the new CHILD_SA	
Test IKEv2.SGW.I.1.2.3.2: Use of the flew CHILD_SA Test IKEv2.SGW.I.1.2.3.3: Lifetime of CHILD_SA expires	
Test IKEv2.SGW.I.1.2.3.4: Sending Multiple Transform	
Test IKEv2.SGW.I.1.2.3.5: Sending Multiple Proposal	
Test IKEv2.SGW.I.1.2.3.6: Rekeving Failure	
1 C/F 11 17 1 4 1 7 1 1 1 1 1 4 4 1 1 1 1 1 4 4 1 1 1 1	1 ZU

Test IKEv2.SGW.I.1.2.3.7: Perfect Forward Secrecy Test IKEv2.SGW.I.1.2.3.8: Use of the old CHILD SA		
-		
GROUP 2.4. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE		
Test IKEv2.SGW.I.1.2.4.1: Close the replaced IKE_SA Test IKEv2.SGW.I.1.2.4.2: Use of the new IKE SA		
Test IKEv2.SGW.I.1.2.4.3: Lifetime of IKE_SA expires		
Test IKEv2.SGW.I.1.2.4.4: Sending Multiple Transform		
Test IKEv2.SGW.I.1.2.4.5: Sending Multiple Proposal		
Test IKEv2.SGW.I.1.2.4.6: Use of the old IKE_SA		
Test IKEv2.SGW.I.1.2.4.7: Changing PRFs when rekeying the IKE SA		
GROUP 2.5. CREATING NEW CHILD_SAS WITH THE CREATE_CHILD_SA EXCHANGES		
Test IKEv2.SGW.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA request.	753	. 133
Test IKEv2.SGW.I.1.2.5.2: Receipt of cryptographically valid message on the new SA		
GROUP 2.6. EXCHANGE COLLISIONS Test IKEv2.SGW.I.1.2.6.1: Simultaneous CHILD_SA Close		
Test IKEv2.SGW.I.1.2.6.2: Simultaneous IKE_SA Close		
Test IKEv2.SGW.I.1.2.6.3: Simultaneous TKE_SA Close Test IKEv2.SGW.I.1.2.6.3: Simultaneous CHILD_SA Rekeying		
Test IKEv2.SGW.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission		
Test IKEv2.SGW.I.1.2.6.5: Simultaneous IKE_SA Rekeying		
Test IKEv2.SGW.I.1.2.6.6: Simultaneous IKE_SA Rekeying with retransmission		
Test IKEv2.SGW.I.1.2.6.7: Rekeying a CHILD_SA while Closing a CHILD_SA		
Test IKEv2.SGW.I.1.2.6.8: Closing a New CHILD_SA		
Test IKEv2.SGW.I.1.2.6.9: Rekeying a New CHILD SA		
Test IKEv2.SGW.I.1.2.6.10: Rekeying an IKE_SA with half-open CHILD_SAs		
Test IKEv2.SGW.I.1.2.6.11: Rekeying a CHILD_SA while rekeying an IKE_SA		
Test IKEv2.SGW.I.1.2.6.12: Rekeying an IKE_SA with half-closed CHILD_SAs	787	
Test IKEv2.SGW.I.1.2.6.13: Closing a CHILD_SA while rekeying an IKE_SA		
Test IKEv2.SGW.I.1.2.6.14: Closing an IKE_SA while rekeying an IKE_SA		
Test IKEv2.SGW.I.1.2.6.15: Rekeying an IKE _SA while Closing an IKE _SA	790)
GROUP 2.7. NON ZERO RESERVED FIELDS	•••••	. 791
Test IKEv2.SGW.I.1.2.7.1: Non zero RESERVED fields in CREATE_CHILD_SA response		
Group 3. The INFORMATIONAL Exchange		
GROUP 3.1. HEADER AND PAYLOAD FORMATS	•••••	. 794
Test IKEv2.SGW.I.1.3.1.1: Sending INFORMATIONAL Exchange	794	
GROUP 3.2. USE OF RETRANSMISSION TIMERS	•••••	. 795
Test IKEv2.SGW.I.1.3.2.1: Retransmission of INFORMATIONAL request	795	
Test IKEv2.SGW.I.1.3.2.2: Stop of retransmission of INFORMATIONAL request	796	,
GROUP 3.3. NON ZERO RESERVED FIELDS		. 797
Test IKEv2.SGW.I.1.3.3.1: Non zero RESERVED fields in INFORMATIONAL response		
GROUP 3.4. ERROR HANDLING		708
Test IKEv2.SGW.I.1.3.4.1: INVALID_SPI		
Section 2.1.2. Endpoint to Security Gateway Tunnel	.799)
Group 1. The Initial Exchanges	. 799)
GROUP 1.1. HEADER AND PAYLOAD FORMATS		
Test IKEv2.SGW.I.2.1.1.1: Sending IKE_AUTH request		
Test IKEv2.SGW.I.2.1.1.2: Use of CHILD_SA		
Section 2.2. Responder	.812	
Section 2.2.1. Security Gateway to Security Gateway Tunnel		
Group 1. The Initial Exchanges		
GROUP 1.1. HEADER AND PAYLOAD FORMATS		
GROUF 1.1. FIEADER AND FAYLUAD FURMATS	•••••	. 013

Test IKEv2.SGW.R.1.1.1.1: Sending IKE_SA_INIT response	813	
Test IKEv2.SGW.R.1.1.1.2: Sending IKE_AUTH response		
Test IKEv2.SGW.R.1.1.1.3: Use of CHILD SA		
GROUP 1.2. USE OF RETRANSMISSION TIMERS	8	331
Test IKEv2.SGW.R.1.1.2.1: Receipt of retransmitted IKE_SA_INIT request		
Test IKEv2.SGW.R.1.1.2.2: Receipt of retransmitted IKE_AUTH request	833	
GROUP 1.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	5	334
Test IKEv2.SGW.R.1.1.3.1: State Synchronization with ICMP messages.		,,,,
Test IKEv2.SGW.R.1.1.3.2: State Synchronization with IKE messages		
Test IKEv2.SGW.R.1.1.3.3: Close connections when receiving INITIAL_CONTACT	841	
Test IKEv2.SGW.R.1.1.3.4: Receiving Liveness check	842	
Test IKEv2.SGW.R.1.1.3.5: Receiving Delete Payload for IKE_SA	8/1/	
Test IKEv2.SGW.R.1.1.3.6: Receiving Delete Payload for CHILD_SA	846	
·		
GROUP 1.4. VERSION NUMBERS AND FORWARD COMPATIBILITY		348
Test IKEv2.SGW.R.1.1.4.1: Receipt of a higher minor version number		
Test IKEv2.SGW.R.1.1.4.2: Receipt of a higher major version number		
Test IKEv2.SGW.R.1.1.4.3: Unrecognized payload types and critical bit is not set	852	
Test IKEv2.SGW.R.1.1.4.4: Unrecognized payload types and critical bit is set		
Test IKEv2.SGW.R.1.1.4.5: Invalid Order Payloads	860	
GROUP 1.5. COOKIES) <u>/</u> 1
Test IKEv2,SGW.R.1.1.5.1: Cookies		100
Test IKEv2.SGW.R.1.1.5.1: Cookies Test IKEv2.SGW.R.1.1.5.2: Invalid Cookies		
Test IKEv2.SGW.R.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD Test IKEv2.SGW.R.1.1.5.4: Interaction of COOKIE and INVALID KE PAYLOAD with	803	
	0.64	
unoptimized Initiator	864	
GROUP 1.6. CRYPTOGRAPHIC ALGORITHM NEGOTIATION		365
Test IKEv2.SGW.R.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA	865	
Test IKEv2.SGW.R.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA		
Test IKEv2.SGW.R.1.1.6.3: Receiving Multiple Transforms for IKE_SA		
Test IKEv2.SGW.R.1.1.6.4: Receiving Multiple Proposals for IKE_SA		
Test IKEv2.SGW.R.1.1.6.5: Receiving Multiple Transforms for CHILD_SA	884	
Test IKEv2.SGW.R.1.1.6.6: Receiving Multiple Proposals for CHILD_SA		
Test IKEv2.SGW.R.1.1.6.7: Sending INVALID_KE_PAYLOAD		
Test IKEv2.SGW.R.1.1.6.8: Sending INVALID_KE_PAYLOAD in Initial Exchange		
Test IKEv2.SGW.R.1.1.6.9: Creating an IKE SA without a CHILD SA		
Test IKEv2.SGW.R.1.1.6.9: Creating an IKE_SA without a CHILD_SA		
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	9) 0(
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	900)0(
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE	900 903) 0(
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	900 903) 0(
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE	900 903 906	
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	900 900 903 906	
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION	900 903 906 910	
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX	900 900 903 906 910	
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS	900 900 906 910 911 912	91(
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS GROUP 1.10 AUTHENTICATION OF THE IKE_SA	900 900 906 910 911 912	91(
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload	900 900 906 910 911 912	91(
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload	900 900 906 910 911 912 913 916	910
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature	900 900 906 910 911 912 913 916	91(
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload	900 900 906 910 911 912 913 916	910
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature Test IKEv2.SGW.R.1.1.10.4: HEX string PSK	900 900 906 910 911 912 913 916 918	910 913
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature Test IKEv2.SGW.R.1.1.10.4: HEX string PSK GROUP 1.11 INVALID VALUES	900 900 906 910 911 912 913 916 918	910 913
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors. Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE. Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors. GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS. GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload. Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload. Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature. Test IKEv2.SGW.R.1.1.10.4: HEX string PSK. GROUP 1.11 INVALID VALUES Test IKEv2.SGW.R.1.1.1.1: Non zero RESERVED fields in IKE_SA_INIT request	900 900 906 910 911 912 913 916 918 922	910 913
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE. Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors. GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS. GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature Test IKEv2.SGW.R.1.1.10.4: HEX string PSK. GROUP 1.11 INVALID VALUES Test IKEv2.SGW.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request Test IKEv2.SGW.R.1.1.11.2: Non zero RESERVED fields in IKE_AUTH request	900 900 906 910 911 912 913 916 918 924 924	910 913
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature Test IKEv2.SGW.R.1.1.10.4: HEX string PSK GROUP 1.11 INVALID VALUES Test IKEv2.SGW.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request Test IKEv2.SGW.R.1.1.11.2: Non zero RESERVED fields in IKE_AUTH request Test IKEv2.SGW.R.1.1.11.3: Version bit is set	900 900 906 910 911 912 913 916 918 924 924 926	910 913
GROUP 1.7. TRAFFIC SELECTOR NEGOTIATION Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE. Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors. GROUP 1.8. ERROR HANDLING Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS. GROUP 1.10 AUTHENTICATION OF THE IKE_SA Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature Test IKEv2.SGW.R.1.1.10.4: HEX string PSK. GROUP 1.11 INVALID VALUES Test IKEv2.SGW.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request Test IKEv2.SGW.R.1.1.11.2: Non zero RESERVED fields in IKE_AUTH request	900 900 903 906 910 911 912 913 916 918 922 924 926 928	910 913

Group 2. The CREATE_CHILD_SA Exchange	933
GROUP 2.1. HEADER AND PAYLOAD FORMATS	
Test IKEv2.SGW.R.1.2.1.1: Receipt of CREATE_CHILD_SA request	933
GROUP 2.2. USE OF RETRANSMISSION TIMERS	943
Test IKEv2.SGW.R.1.2.2.1: Receipt of CREATE_CHILD_SA requests	943
GROUP 2.3. STATE SYNCHRONIZATION AND CONNECTION TIMEOUTS	945
Test IKEv2.SGW.R.1.2.3.1: Receiving Delete Payload for Multiple CHILD_SA	945
GROUP 2.4. CRYPTOGRAPHIC ALGORITHM NEGOTIATION	
Test IKEv2.SGW.R.1.2.4.1: Sending NO PROPOSAL CHOSEN	
5	
GROUP 2.5. REKEYING CHILD_SA USING A CREATE_CHILD_SA EXCHANGE	
Test IKEv2.SGW.R.1.2.5.1: Close the replaced CHILD_SA	
Test IKEv2.SGW.R.1.2.5.2: Use of the new CHILD_SA	
Test IKEv2.SGW.R.1.2.5.3: Receiving Multiple Transform	
Test IKEv2.SGW.R.1.2.5.4: Receiving Multiple Proposal	
Test IKEv2.SGW.R.1.2.5.6: Use of the old CHILD_SA	
_	
GROUP 2.6. REKEYING IKE_SAS USING A CREATE_CHILD_SA EXCHANGE	
Test IKEv2.SGW.R.1.2.6.1: Sending CREATE_CHILD_SA response	
Test IKEv2.SGW.R.1.2.6.2: Receipt of cryptographically valid message on the old SA	
Test IKEv2.SGW.R.1.2.6.3: Receipt of cryptographically valid message on the new SA	
Test IKEv2.SGW.R.1.2.6.4: Close the replaced IKE_SA Test IKEv2.SGW.R.1.2.6.5: Receiving Multiple Transform	
Test IKEv2.SGW.R.1.2.6.6: Receiving Multiple Proposal	
Test IKEv2.SGW.R.1.2.6.7: Changing RPFs when rekeying the IKE_SA	
Test IKEv2.SGW.R.1.2.6.8: D-H transform NONE when rekeying the IKE_SA	
Test IKEv2.SGW.R.1.2.6.9: Rekeying Failure	
GROUP 2.7. CREATING NEW CHILD_SA WITH THE CREATE_CHILD_SA EXCHANGE	
Test IKEv2.SGW.R.1.2.7.1: Receipt of cryptographically protected message on the new SA	1000 1000
GROUP 2.8. ERROR HANDLING	
Test IKEv2.SGW.R.1.2.8.1: AUTHENTICATION_FAILED	
GROUP 2.9. NON ZERO RESERVED FIELDS	1007
Test IKEv2.SGW.R.1.2.9.1: Non zero RESERVED fields in CREATE_CHILD_SA request	1007
Group 3. The INFORMATIONAL Exchange	1009
•	
GROUP 3.1. HEADER AND PAYLOAD FORMATS	1009
Test IKEv2.SGW.R.1.3.1.1: Sending INFORMATIONAL response	1009
GROUP 3.2. USE OF RETRANSMISSION TIMERS	
Test IKEv2.SGW.R.1.3.2.1: Receipt of retransmitted INFORMATIONAL request	1013
GROUP 3.3. NON ZERO RESERVED FIELDS	
Test IKEv2.SGW.R.1.3.3.1: Non RESERVED fields in INFORMATIONAL request	1015
Section 2.2.2. Endpoint to Security Gateway Tunnel	1017
section 2.2.2. Enapoint to Secural Gateway Tunnet	1017
Group 1. The Initial Exchanges	1039
GROUP 1.1. HEADER AND PAYLOAD FORMATS	1040
Test IKEv2.SGW.R.2.1.1.1: Sending IKE_AUTH response	
Test IKEv2.SGW.R.2.1.1.2: Use of CHILD_SA	
GROUP 1.2. REQUESTING AN INTERNAL ADDRESS ON A REMOTE NETWORK	
Test IKEv2.SGW.R.2.1.2.1: Receipt of CFG_REQUEST	
Test IKEv2.SGW.R.2.1.2.1: Receipt of CFG_REQUEST Test IKEv2.SGW.R.2.1.2.2: Use of CHILD_SA	
Test IKEv2.SGW.R.2.1.2.3: Non zero RESERVED fields in Configuration Payload	
Test IKEv2.SGW.R.2.1.2.4: No Configuration payload	
Test IKEv2.SGW.R.2.1.2.5: Receipt of Multiple CFG_REQUEST	

Requirements

To obtain the IPv6 Ready Logo Phase-2 for IKEv2, the Node Under Test (NUT) must satisfy all of the following requirements.

Equipment Type

There are two possibilities for equipment types:

End-Node:

A node who can use IKEv2 (IPsec) only for itself. Host and Router can be an End-Node.

SGW (Security Gateway):

A node who can provide IKEv2 (IPsec tunnel mode) for nodes behind it. Router can be a SGW.

Function List

Basic/Advanced Functionality table

This conformance test specification consists following BASIC/ADVANCED functions. The tests for ADVANCED functions may be omitted if the NUT does not support the ADVANCED function

All NUTs are required to support BASIC. ADVANCED is required for all NUTs which support ADVANCED function.

Parameter		BASIC	ADVANCED
Exchange Type		Initial Exchanges (IKE_INIT, IKE_AUTH)	-
Exchange Type		CREATE_CHILD_SA	-
		INFORMATIONAL	-
	Encryption Algorithm	ENCR_3DES	ENCR_AES_CBC ENCR_AES_CTR
HZE CA	Pseudo-random Function	PRF_HMAC_SHA1	PRF_AES128_XCBC
IKE_SA	Integrity Algorithm	AUTH_HMAC_SHA1_96	AUTH_AES_XCBC_96
	Diffie-Hellman Group	2 (1024 MODP Group)	14 (2048-bit MODP Group) 24 (2048-bit MODP Group with 256-bit Prime Order Subgroup)
	Encryption Algorithm	ENCR_3DES	ENCR_AES_CBC ENCR_AES_CTR ENCR_NULL
CHILD_SA	Integrity Algorithm	AUTH_HMAC_SHA1_96	AUTH_AES_XCBC_96 NONE
	Extended Sequence Numbers	No Extended Sequence Numbers	Extended Sequence Numbers
Authentication Met	thod	PSK	-
Security Protocol		ESP	-
Encapsulation	End-Node	Transport	Tunnel
mode	SGW	Tunnel	-
Multiple Proposals		Receiving	Sending
Multiple Transforms		Receiving	Sending
Liveness Check		Support	-

Cookies	-	Support
Rekeying	Support	-
Traffic Selector Negotiation	Support	-
Requesting an Internal Address on a Remote Network	-	Support
Perfect Forward Secrecy	-	Support
Closing SAs	Support	-
ID Type	ID_IPV6_ADDR	-
Creating additional CHILD_SA	-	Support

Common Topology

Common Topology for End-Node: End-Node to End-Node

The common topology involves End-Nodes and Router device on each link.

The transport mode is used in this topology.

Common Topology for End-Node: End-Node to SGW

The common topology involves End-Node, SGW and Router device on each link.

The tunnel mode is used in this topology.

Common Topology for SGW: SGW to SGW

The common topology involves SGWs, Router and Host device on each link.

The tunnel mode is used in this topology.

Common Topology for SGW: SGW to End-Node

The common topology involves End-Node, SGW, Router and Host device on each link.

The tunnel mode is used in this topology.

Common Configuration for NUT

Common Configuration for End-Node: End-Node to End-Node

IKE Peer

	Address	Port	A	uthentication	ID	
	Address Port		Method	Key Value	Type	Data
Local	NUT	500	PSK	IKETEST12345678!	ID_IPV6_ADDR	NUT
Remote	TN1	500	PSK	IKETEST12345678!	ID_IPV6_ADDR	TN1

IKE_SA

	Algorithms									
Encryption	PRF	Integrity	Diffie-Hellman							
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)							

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

CHILD_SA

	Security	Mode		Algorithm	s
	Protocol	Mode	Encryption	Integrity	Extended Sequence Numbers
Inbound	ESP	Transport	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Outbound	ESP	Transport	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

	Traffic Selector									
		Source		Destination						
	Address Next Layer Port			Address	ldress Next Layer Port					
	Range	Protocol	Range	Range Protocol Range						
Inbound	TN1	ANY	ANY	NUT	ANY	ANY				
Outbound	NUT	ANY	ANY	TN1	ANY	ANY				

Common Configuration for End-Node: End-Node to SGW

IKE Peer

	Address	Port	Auth	nentication	ID	
	Address	Method		Key Value	Type	Data
Local	NUT	500	PSK	IKETEST123!	ID_IPV6_ADDR	NUT
Remote	TN1 (Link X)	500	PSK	IKETEST456!	ID_IPV6_ADDR	TN1 (LinkX)

IKE_SA

	Algorithms								
Encryption	PRF	Integrity	Diffie-Hellman						
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)						

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

CHILD_SA

	Security	Mode		Algorithm	s
	Protocol	Mode	Encryption	Integrity	Extended Sequence Numbers
Inbound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Outbound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

			Traffic	Selector			
		Source		Destination			
	Address	Next Layer	Port	Address	Address Next Layer Port		
	Range	Protocol	Range	Range Protocol Range			
Inbound	Link Y	ANY	ANY	NUT	ANY	ANY	
Outbound	NUT	ANY	ANY	Link Y	ANY	ANY	

Common Configuration for SGW: SGW to SGW

IKE Peer

	Address	Port	Auth	nentication	ID	
	Audress	rort	Method	Key Value	Type	Data
Local	NUT (Link A)	500	PSK	IKETEST123!	ID_IPV6_ADDR	NUT (Link A)
Remote	TN1 (Link X)	500	PSK	IKETEST456!	ID_IPV6_ADDR	TN1 (Link X)

IKE_SA

	Algorithms								
Encryption	PRF	Integrity	Diffie-Hellman						
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)						

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

CHILD_SA

	Security	Mode		Algorithm	s
	Protocol	Mode	Encryption	Integrity	Extended Sequence Numbers
Inbound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Outbound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

		Traffic Selector									
		Source		Destination							
	Address	Next Layer	Port	Address	Address Next Layer Port						
	Range	Protocol	Range	Range Protocol Rang							
Inbound	Link Y	ANY	ANY	Link B	ANY	ANY					
Outbound	Link B	ANY	ANY	Link Y	ANY	ANY					

Common Configuration for SGW: SGW to End-Node

IKE Peer

	Address	Port	Autl	nentication	ID	
	Address	rort	Method	Key Value	Type	Data
Local	NUT (Link A)	500	PSK	IKETEST123!	ID_IPV6_ADDR	NUT (Link A)
Remote	TN1	500	PSK	IKETEST456!	ID_IPV6_ADDR	TN1

IKE_SA

Algorithms				
Encryption	PRF	Integrity	Diffie-Hellman	
ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	2 (1024 MODP Group)	

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

CHILD_SA

		Security	Mode		Algorithms	s
		Protocol	Mode	Encryption	Integrity	Extended Sequence Numbers
Inb	oound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Out	bound	ESP	Tunnel	ENCR_3DES	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers

If NUT is the initiator, above proposal must be one of proposals from NUT.

If NUT is the responder, NUT must select above proposal.

		Traffic Selector				
	Source			Destination		
	Address Next Layer Port			Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1	ANY	ANY

Common Packets

Common Packets to be transmitted from Tester are defined as the following tables. Tests in this test specification may refer to these common packets.

IKE_SA_INIT Messages

Common Packet #1: IKE_SA_INIT request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	Any
	IKE_SA Responder's SPI	0
	Next Payload	33 (SA)
	Major Version	2
	Minor Version	0
	Exchange Type	34 (IKE_SA_INIT)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	1
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
SA Payload	Next Payload	34 (KE)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Table below
KE Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
Ni, Nr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any

• SA Payload

SA Payload	Next Payload				34 (KE)
Bill ayloud	Critical	0			
	Reserved				0
	Payload Leng	yth .			44
	Proposal #1	SA Proposal	Next Payload		0 (last)
	F	arrange and	Reserved		0
			Proposal Length	1	40
			Proposal #	<u>- </u>	1
			Protocol ID		1 (IKE)
			SPI Size		Ó
			# of Transforms	3	4
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8

			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	2 (HMAC_SHA1)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	2 (1024 MODP Group)

Common Packet #2: IKE_SA_INIT response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	Any
	Next Payload	33 (SA)
	Major Version	2
	Minor Version	0
	Exchange Type	34 (IKE_SA_INIT)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
SA Payload	Next Payload	34 (KE)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Table below
KE Payload	Next Payload	40 (Ni, Nr)
-	Critical	0
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
Ni, Nr Payload	Next Payload	0
,	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any

• SA Payload

SA Payload	Next Payload	34 (KE)			
	Critical	0			
	Reserved	0			
	Payload Leng	gth	44		
	Proposal #1	SA Proposal	Next Payload		0 (last)
			Reserved		0
			Proposal Length	n	40
			Proposal #		1
			Protocol ID		1 (IKE)
			SPI Size		0
			# of Transforms	S	4
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	2 (PRF)
				Reserved	0
				Transform ID	2 (HMAC_SHA1)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC SHA1 96)

	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

IKE_AUTH Messages

Common Packet #3: IKE_AUTH request for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	35 (IKE_AUTH)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	1
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	1
	Length	any
E Payload	Next Payload	35 (IDi)
L I dylodd	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
IDi Payload	Next Payload	39 (AUTH)
IDI Fayioau	Critical	
	Reserved	0
	Payload Length	24
	ID Type	IPV6_ADDR
	Reserved	11 V0_ADDR
	Identification Data	TN1's Global Address on Link X
AUTH Payload	Next Payload	41 (N)
AO 1111 ayioau	Critical	0
	Reserved	0
	Payload Length	
	Auth Method	any 2 (SK_MIC)
	Reserved	2 (SK_MIC) 0
	Authentication Data	
N Dayland		any
N Payload	Next Payload Critical	33 (SA)
	Reserved	0
		-
	Payload Length	8
	Procotol ID	0
	SPI Size	0
G + D - 1 - 1	Notify Message Type	16391 (USE_TRANSPORT_MODE)
SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Table below
ma n 1 1	Next Payload	0
TSr Payload		
TSr Payload	Critical Reserved	0

Payload Length	48
Number of TSs	1
Reserved	0
Traffic Selectors	See TSr Table below

• SA Payload

SA Payload	Next Payload	44 (TSi)			
	Critical				0
	Reserved				0
	Payload Length				40
	Proposal #1	SA Proposal	Next Payload		0 (last)
	1		Reserved		0
			Proposal Length	1	36
			Proposal #		1
			Proposal ID		3 (ESP)
			SPI Size		4
			# of Transforms		3
			SPI		any
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (ESN)
				Reserved	0
				Transform ID	0 (No ESN)

• TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Common Packet #4: IKE_AUTH response for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	35 (IKE_AUTH)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	1
	Length	any
E Payload	Next Payload	36 (IDr)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
TD D 1 1	Integrity Checksum Data	The Cryptographic checksum of the entire message
IDr Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	24
	ID Type	IPV6_ADDR
	Reserved	()
ATITH Daylood	Identification Data Next Payload	TN1's Global Address on Link X
AUTH Payload	Critical	41 (N)
	Reserved	0
	Payload Length	
	Auth Method	any 2 (SK_MIC)
	Reserved	0
	Authentication Data	any
N Payload	Next Payload	33 (SA)
1114/1044	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	16391(USE_TRANSPORT_MODE)
SA Payload	Next Payload	44 (TSi)
,	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
TSi Payload	Next Payload	45 (TSr)
-	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0

Traffic Selectors See Traffic Selector Table below

SA Payload

SA Payload	Next Payload				44 (TSi)
	Critical			0	
	Reserved				0
	Payload Leng				40
	Proposal #1	SA Proposal	Next Payload		0 (last)
			Reserved		0
			Proposal Length	ı	36
			Proposal #		1
			Proposal ID		3 (ESP)
			SPI Size		4
			# of Transforms	\$	3
			SPI		any
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (ESN)
				Reserved	0
				Transform ID	0 (No ESN)

• TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

Common Packet #5: IKE_AUTH request for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
II vo Ileadei	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
CDI IIcuaci	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
IKEV2 Header	IKE SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	
	X (bits 0-2 of Flags)	35 (IKE_AUTH) 0
	I (bit 3 of Flags) V (bit 4 of Flags)	1
	ξ,	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	1
	Length	any
E Payload	Next Payload	35 (IDi)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
IDi Payload	Next Payload	39 (AUTH)
•	Critical	0
	Reserved	0
	Payload Length	24
	ID Type	IPV6_ADDR
	Reserved	0
	Identification Data	TN1's Global Address on Link X
AUTH Payload	Next Payload	33 (SA)
Ĭ	Critical	0
	Reserved	0
	Payload Length	any
	Auth Method	2 (SK_MIC)
	Reserved	0
	Authentication Data	any
SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
TSi Payload	Next Payload	45 (TSr)
-211 4,1044	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	See 151 Payroad Table below
1 St Payload		
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below

SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	40

		1 OKOM		
Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length	1	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms		3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	Ó
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	Ó
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	Ó
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)
 				. (

• TSi Payload for End-Node to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

• TSr Payload for End-Node to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)

Selector Length	40
Start Port	0
End Port	65535
Starting Address	Prefix B:0000:0000:0000:0000
Ending Address	Prefix B:ffff:ffff:ffff

• TSi Payload for SGW to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• TSr Payload for SGW to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Common Packet #6: IKE_AUTH response for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	35 (IKE_AUTH)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	1
	Length	any
E Payload	Next Payload	36 (IDr)
L I ayload	Critical	0
	Reserved	0
	Payload Length	
		any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
IDr Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	24
	ID Type	IPV6_ADDR
	Reserved	0
	Identification Data	TN1's Global Address on Link X
AUTH Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	any
	Auth Method	2 (SK_MIC)
	Reserved	0
	Authentication Data	any
SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
TSi Payload	Next Payload	45 (TSr)
,	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
151 I ayload	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved Traffic Selectors	0 See TS# Paylord Table below
	Traffic Selectors	See TSr Payload Table below

SA Payload	Next Payload	44 (TSi)
	Critical	0

Reserved	0			
Payload Length			40	
Proposal #1	SA Proposal	Next Payload		0 (last)
	_	Reserved		0
		Proposal Length	1	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	}	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

• TSi Payload for End-Node to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSr Payload for End-Node to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

TSr Payload		

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	Prefix Y:0000:0000:0000:0000
	Ending Address	Prefix Y:ffff:ffff:ffff

• TSi Payload for SGW to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• TSr Payload for SGW to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

${\bf CREATE_CHILD_SA\ Messages\ for\ Generating\ CHILD_SA}$

Common Packet #7: CREATE_CHILD_SA request for Generating CHILD_SA for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
		If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	16391(USE_TRANSPORT_MODE)
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below

SA Payload	Next Payload				44 (TSi)
	Critical				0
	Reserved	0			
	Payload Leng	gth			40
	Proposal #1	SA Proposal	Next Payload		0 (last)
			Reserved		0
			Proposal Length	ı	36
			Proposal #		1
			Proposal ID		3 (ESP)
			SPI Size		4
			# of Transforms	1	3
			SPI		any
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (ESN)
				Reserved	0
				Transform ID	0 (No ESN)

• TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Common Packet #8: CREATE_CHILD_SA response for Generating CHILD_SA for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
N Payload	Next Payload	33 (SA)
1 (1 uy 10uu	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	16391 (USE_TRANSPORT_MODE)
SA Payload	Next Payload	40 (Ni, Nr)
2	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
·	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
*	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below

SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0

FORUM					
Payload Leng	gth			40	
Proposal #1	SA Proposal	Next Payload		0 (last)	
		Reserved		0	
		Proposal Length	1	36	
		Proposal #		1	
		Proposal ID		3 (ESP)	
		SPI Size		4	
		# of Transforms	}	3	
		SPI		any	
		SA Transform	Next Payload	3 (more)	
			Reserved	0	
			Transform Length	8	
			Transform Type	1 (ENCR)	
			Reserved	0	
			Transform ID	3 (3DES)	
		SA Transform	Next Payload	3 (more)	
			Reserved	0	
			Transform Length	8	
			Transform Type	3 (INTEG)	
			Reserved	0	
			Transform ID	2 (HMAC_SHA1_96)	
		SA Transform	Next Payload	0 (last)	
			Reserved	0	
			Transform Length	8	
			Transform Type	5 (ESN)	
			Reserved	0	
			Transform ID	0 (No ESN)	

TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

Common Packet #9: CREATE_CHILD_SA request for Generating CHILD_SA for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
		If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	33 (SA)
,	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
.,,	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
y	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below
	Trairie Belectors	Sec 1511 ayload 1 able below

• SA Payload

SA Payload	Next Payload	44 (TSi)		
	Critical	0		
	Reserved	0		
	Payload Leng		40	
	Proposal #1	SA Proposal	Next Payload	0 (last)
			Reserved	0
			Proposal Length	36
			Proposal #	1
			Proposal ID	3 (ESP)

46

1 0110111		
SPI Size		4
# of Transforms	1	3
SPI		any
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	1 (ENCR)
	Reserved	0
	Transform ID	3 (3DES)
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Common Packet #10: CREATE_CHILD_SA response for Generating CHILD_SA for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	33 (SA)
-	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	any
	Encrypted IKE Payloads	any
	Padding	any
	Pad Length	any
	Integrity Checksum Data	any
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below

SA Payload	Next Payload	Next Payload				
	Critical	Critical				
	Reserved	Reserved				
	Payload Leng	Payload Length				
	Proposal #1	SA Proposal	Next Payload	0 (last)		
			Reserved	0		
			Proposal Length	36		
			Proposal #	1		
			Proposal ID	3 (ESP)		
			SPI Size	4		

# of Transforms		3
	5	
SPI		any
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	1 (ENCR)
	Reserved	0
	Transform ID	3 (3DES)
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff:ffff

${\bf CREATE_CHILD_SA\ Messages\ for\ Rekeying\ IKE_SA}$

Common Packet #11: CREATE_CHILD_SA request for Rekeying IKE_SA

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
		If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	44
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	0
-	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any

SA Payload	Next Payload			34 (KE)	
	Critical	0			
	Reserved				0
	Payload Leng	gth			44
	Proposal #1	SA Proposal	Next Payload		0 (last)
		_	Reserved		0
			Proposal Length	1	40
			Proposal #		1
			Protocol ID		1 (IKE)
		SPI Size		0	
			# of Transforms		4
				Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
			Transform ID	3 (3DES)	
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	2 (PRF)

		Reserved	0
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

Common Packet #12: CREATE_CHILD_SA response for Rekeying IKE_SA

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	44
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	0
•	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any

SA Payload	Next Payload				34 (KE)	
	Critical	0				
	Reserved	0				
	Payload Leng	th			44	
	Proposal #1	SA Proposal	Next Payload		0 (last)	
			Reserved		0	
			Proposal Length	1	40	
			Proposal #		1	
			Protocol ID		1 (IKE)	
			SPI Size		0	
			# of Transforms	3	4	
			SA Transform	Next Payload	3 (more)	
				Reserved	0	
				Transform Length	8	
				Transform Type	1 (ENCR)	
				Reserved	0	
		SA Transform	Transform ID	3 (3DES)		
				SA Transform	Next Payload	3 (more)
				Reserved	0	
				Transform Length	8	
			Transform Type	2 (PRF)		
				Reserved	0	
					Transform ID	2 (HMAC_SHA1)
			SA Transform	Next Payload	3 (more)	
				Reserved	0	

		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

CREATE_CHILD_SA Messages for Rekeying CHILD_SA

Common Packet #13: CREATE_CHILD_SA request for Rekeying CHILD_SA for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
11 VO HEAUEI	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	NOT'S GIODAI Address on Link A
ODP Header	Destination Port	500
IKEv2 Header	IKE SA Initiator's SPI	
IKEV2 Header		The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
		The value incremented the previous IKE message's Message ID by one.
	Message ID	If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	41 (N)
<i>y</i>	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding Payloads	
		Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
N Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	3 (ESP)
	SPI Size	4
	Notify Message Type	16393 (REKEY_SA)
	SPI	any
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	16391 (USE_TRANSPORT_MODE)
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
141, 141 1 ayload	Critical	` ,
		0
	Reserved	
	Payload Length	any
ma: p : :	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffice Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
-	Critical	0
	1	

Reserved	0
Payload Length	48
Number of TSs	1
Reserved	0
Traffice Selectors	See TSr Payload Table below

SA Payload

SA Payload	Next Payload				44 (TSi)
	Critical	0			
	Reserved				0
	Payload Leng	gth			40
	Proposal #1	SA Proposal	Next Payload		0 (last)
		_	Reserved		0
			Proposal Length	ı	36
			Proposal #		1
			Proposal ID		3 (ESP)
			SPI Size		4
			# of Transforms	1	3
			SPI		any
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	1 (ENCR)
				Reserved	0
				Transform ID	3 (3DES)
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (ESN)
				Reserved	0
				Transform ID	0 (No ESN)

• TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Common Packet #14: CREATE_CHILD_SA response for Rekeying CHILD_SA for Transport Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
IIIE v 2 Treader	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	
E Payload	Next Payload	any 41 (N)
E Fayloau	Critical	
	Reserved	0
	Payload Length Initialization Vector	any
	Encrypted IKE Payloads	The same value as block length of the underlying encryption algorithm Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field The Cryptographic checksum of the entire message
N.D. 1 1	Integrity Checksum Data	
N Payload	Next Payload	33 (SA)
	Critical	0
	Reserved Payload Length	0
		8
	Protocol ID	0
	SPI Size	0
CAD 1 1	Notify Message Type	16391 (USE_TRANSPORT_MODE)
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
N' N D 1 1	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
TC: D11	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
ma p	Traffice Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffice Selectors	See TSr Payload Table below

SA Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0

		1 OKOM		
Payload Leng	th			40
Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length	1	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	1	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

TSi Payload for End-Node to End-Node test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• TSr Payload for End-Node to End-Node test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

Common Packet #15: CREATE_CHILD_SA request for Rekeying CHILD_SA for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
		If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	41 (N)
214)1044	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
N Payload	Integrity Checksum Data Next Payload	The Cryptographic checksum of the entire message 33 (SA)
N Fayload	Critical	
	Reserved	0
	Payload Length	0
	Protocol ID	3 (ESP)
	SPI Size	16202 (DEVEV CA)
CAD 1 1	Notify Message Type	16393 (REKEY_SA)
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table below
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below
	•	,

SA Payload	Next Payload	44 (TSi)
	Critical	0

		1 OKOM		
Reserved				0
Payload Leng	gth			40
Proposal #1	SA Proposal	Next Payload		0 (last)
-	_	Reserved		0
		Proposal Length	1	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	}	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:ffff:ffff:ffff
		Ending Address	Prefix Y:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Common Packet #16: CREATE_CHILD_SA response for Rekeying CHILD_SA for Tunnel Mode

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	36 (CREATE_CHILD_SA)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	33 (SA)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
SA Payload	Next Payload	40 (Ni, Nr)
	Critical	0
	Reserved	0
	Payload Length	40
	SA Proposals	See SA Payload Table
Ni, Nr Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	any
	Nonce Data	any
TSi Payload	Next Payload	45 (TSr)
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSi Payload Table below
TSr Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	48
	Number of TSs	1
	Reserved	0
	Traffic Selectors	See TSr Payload Table below

SA Payload	Next Payload	Next Payload		
	Critical	Critical		
	Reserved	Reserved		
	Payload Leng	gth		40
	Proposal #1	SA Proposal	Next Payload	0 (last)
			Reserved	0
			Proposal Length	36
			Proposal #	1
			Proposal ID	3 (ESP)
			SPI Size	4

# of Transforms		3
	5	
SPI		any
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	1 (ENCR)
	Reserved	0
	Transform ID	3 (3DES)
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

• TSi Payload for SGW to SGW test cases

TSi Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• TSr Payload for SGW to SGW test cases

	TSr Payload			
		Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
			IP Protocol ID	0 (any)
			Selector Length	40
			Start Port	0
			End Port	65535
			Starting Address	Prefix Y:0000:0000:0000:0000
L			Ending Address	Prefix Y:ffff:ffff:ffff

INFORMATIONAL Messages

Common Packet #17: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The IKE_SA Initiator's SPI value used by this IKE message
	IKE_SA Responder's SPI	The IKE_SA Responder's SPI value used by this IKE message
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The value incremented the previous IKE message's Message ID by one.
		If this message is first one, this value is set to 0.
	Length	any
E Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message

Common Packet #18: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	The same value as corresponding request's IKE_SA Responder's SPI value
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The cryptographic checksum of the entire message

ICMPv6 Echo Requests

Common Packet #19: ICMPv6 Echo Request for End-Node to End-Node test cases

IPv6 Header	Source Address	TN1's Global Address
	Destination Address	NUT's Global Address
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	58 (IPV6-ICMP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
ICMPv6 Header	Туре	128
	Code	0
	Identifier	0
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

Common Packet #20: ICMPv6 Echo Request for End-Node to SGW test cases

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH1's Global Address
	Destination Address	NUT's Global Address on Link A
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

Common Packet #21: ICMPv6 Echo Request for SGW to SGW test cases

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
	Source Address	TH2's Global Address
IPv6 Header	Destination Address	TH1's Global Address
	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
ICMPv6 Header	Payload Data	0x000000000000000000000000000000000000

Common Packet #22: ICMPv6 Echo Request for SGW to End-Node test cases

IPv6 Header	Source Address	TN1's Global Address

		I OROM
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	58 (IPV6-ICMP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TN1's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

ICMPv6 Echo Replys

Common Packet #23: ICMPv6 Echo Reply for End-Node to End-Node test cases

IPv6 Header	Source Address	TN1's Global Address
	Destination Address	NUT's Global Address
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	58 (IPV6-ICMP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
ICMPv6 Header	Type	129
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

Common Packet #24: ICMPv6 Echo Reply for End-Node to SGW test cases

IPv6 Header	Source Address	NUT's Global Address on Link A
	Destination Address	TN1's Global Address on Link X
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	NUT's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Type	129
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

Common Packet #25: ICMPv6 Echo Reply for SGW to SGW test cases

IPv6 Header	Source Address	TH1's Global Address
	Destination Address	TH2's Global Address
ICMPv6 Header	Type	129
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x00000000000000000

Common Packet #26: ICMPv6 Echo Reply for SGW to End-Node test cases

IPv6 Header	Source Address	TH1's Global Address	
	Destination Address	TN1's Global Address	
ICMPv6 Header	Type	129	
	Code	0	
	Identifier	Any	
	Sequence Number	Any	
	Payload Data	0x0000000000000000	

Section 1. End Node Section 1.1. Initiator Section 1.1.1. Endpoint-to-Endpoint Transport Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.EN.I.1.1.1: Sending IKE_SA_INIT request

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT request using properly Header and Payloads format.

References:

- [RFC4306] Section 1.2, 2.10, 3.1, 3.2, 3.3, 3.4 and 3.9
- [RFC 4718] Sections 7.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Part B: SA Payload Format (BASIC)

- 3. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 4. Observe the messages transmitted on Link A.

Part C: KE Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

Part D: Nonce Payload Format (BASIC)

- 7. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

The NUT transmits an IKE_SA_INIT request including properly formatted IKE Header containing following values:

Figure 1 Header format

- An IKE_SA Initiator's SPI field set to a 64-bits value chosen by the NUT. It MUST not be zero.
- An IKE_SA Responder's SPI field set to zero.
- A Next Payload field set to SA Payload (33).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_SA_INIT (34).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to zero.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 4: Judgment #1

			1		2		3	
	0 1 2 3	3 4 5 6	789012	2 3 4 5	678901234	456789	9 0 1	
	+-+-+-	-+-+-+	-+-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+	-+-+-+-+-	-+-+-+	
	! Next	34			Length	44	!	ļ
	!	0	! 0	!	Length	40	·+-+-+ !	
	! Numbe	r 1	! Prot ID	1 !	SPI Size 0 !	Trans Cnt	:	
Transform	!	3	! 0	!	Length	8	1	
	! Type	1 (EN)	! 0	!		3 (30	DES) !	į
Transform	!	3	! 0	!	Length	8	! j	SA Payload
	! Type	2 (PR)	! 0	!		2 (SH	HA1) !	
Transform	!	3	! 0	!	Length	8	! -+-+-+	
	! Type	3 (IN)	! 0	!		2 (Sh	HA1) ! -+-+-+	
Transform	!	0	! 0	!	Length	8	1 j	
		4 (DH)		!			024) !	

Figure 2 SA Payload contents

The NUT transmits an IKE_SA_INIT request including properly formatted SA Payload containing following values (refer following figures):

Figure 3 SA Payload format

- A Next Payload field is set to KE Payload (34).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 4 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 40 bytes for this proposal according to Common Configuration.
- A Proposal # field is set to 1 if this structure is the first proposal, otherwise set to 1 greater than the previous proposal.
- A Protocol ID field is set to IKE (1).
- A SPI Size field is set to zero.
- A # of Transforms field is set to 4.

A Transform field is set to following (There are 4 Transform Structures).

		0110111		
	1		2	3
0 1 2 3 4 5 6 7 8	9 0 1 2 3 4	5 6 7	8 9 0 1 2 3 4 5 6 7	78901
+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+	+-+-+-+-+-+-+-+-	-+-+-+-+
! 0 (last) or 3 !	RESERVED	!	Transform Lengt	th!
+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+	+-+-+-+-+-+-+-+-	-+-+-+-+
!Transform Type !	RESERVED	!	Transform ID	!
+-+-+-+-+-+-+-		+-+-+-+	+-+-+-+-+-+-+-+-	-+-+-+-+
!				!
~ Transform Attributes				
!				!
+-+-+-+-+-+-		+-+-+-	+-+-+-+-+-+-+-+-	-+-+-+-+

Figure 5 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for PRF_HMAC_SHA1.
- A Transform Type field is set to PRF (2).
- A RESERVED field is set to zero.
- A Transform ID set to PRF_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #4

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for 1024 MODP Group.
- A Transform Type field is set to D-H (4).
- A RESERVED field is set to zero.
- A Transform ID set to Group2 (2).

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted KE Payload containing following values:

Figure 6 KE Payload format

- A Next Payload field is set to Nonce Payload (40).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 136 bytes for Group 2.
- A DH Group field is set to Group2 (2).
- A RESERVED field is set to zero.
- A Key Exchange Data field is set to Diffie-Hellman public value. The length of the Key Exchange Data field must be equal to 1024bit.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted Nonce Payload containing following values:

Figure 7 Nonce Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Nonce Data field is set to random data generated by the transmitting entity. The size of the Nonce must between 16 and 256 octets.

Possible Problems:

• IKE_SA_INIT request has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

[N(COOKIE)],
SA, KE, Ni,
[N(NAT_DETECTION_SOURCE_IP)+,
N(NAT_DETECTION_DESTINATION_IP)],
[V+]

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.

Test IKEv2.EN.I.1.1.1.2: Sending IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format.

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: IDi Payload Format (BASIC)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.

- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (BASIC)

- 13. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: Notify Payload Format (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: SA Payload Format (BASIC)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSi Payload Format (BASIC)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link A.

Part H: TSr Payload Format (BASIC)

- 29. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 30. Observe the messages transmitted on Link A.
- 31. TN1 responds with an IKE_SA_INIT response to the NUT.
- 32. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted IKE Header containing following values:

7 01(0)
1 2 3
01234567890123456789012345678901
+-
! IKE_SA Initiator's SPI !
!
+-
! IKE_SA Responder's SPI !
!
+-
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
+-
! Message ID !
+-
! Length !
+-

Figure 8 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_AUTH (35).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to 1.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Encrypted Payload containing following values:

Figure 9 Encrypted payload

- A Next Payload field is set to IDi Payload (35).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted ID Payload containing following values:

Figure 10 ID Payload format

- A Next Payload field is set to AUTH Payload (39).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field is set to ID_IPV6_ADDR (5).
- A RESERVED field is set to zero.
- An Identification Data field is set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted AUTH Payload containing following values:

Figure 11 AUTH Payload format

- A Next Payload field is set to Notify Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field is set to Shared Key Message Integrity Code (2).
- A RESERVED field is set to zero.
- An Authentication Data field is set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Notify Payload containing following values:

7 01(0)	
1 2	3
01234567890123456789012	2 3 4 5 6 7 8 9 0 1
+-	-+-+-+-+-+-+-+
! Next Payload !C! RESERVED ! Payl	load Length !
+-	-+-+-+-+-+-
! Protocol ID ! SPI Size ! Notify	Message Type !
+-	-+-+-+-+-+
!	!
~ Security Parameter Index (SPI	l) ~
!	!
+-	-+-+-+-+-+-+-+
!	!
~ Notification Data	~
!	!
+-	-+-+-+-+-+-+-+

Figure 12 Notify Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 8 bytes for USE_TRANSPORT_MODE.
- A Protocol ID field is set to undefined (0).
- A SPI Size field is set to zero.
- A Notify Message Type field is set to USE_TRANSPORT_MODE (16391)

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 24: Judgment #2

Figure 13 SA Payload contents

The NUT transmits an IKE_AUTH request including properly formatted SA Payload containing following values (refer following figures):

Figure 14 SA Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 15 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1 if this structure is the first proposal, otherwise set to 1 greater than the previous proposal.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

	1		2	3
0 1 2 3 4 5 6 7 8	9 0 1 2 3 4	5 6 7	8 9 0 1 2 3 4 5 6 7 8	9 0 1
+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-	+-+-+-+-+-+-+-+-+-	+-+-+-+
! 0 (last) or 3 !	RESERVED	!	Transform Length	!
+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-	+-+-+-+-+-+-+-+-+-	+-+-+-+
!Transform Type !	RESERVED	!	Transform ID	!
+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-	+-+-+-+-+-+-+-+-+-	+-+-+-+
!				!
~	Transfo	rm Att	ributes	~
!				!
+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-	+-+-+-+-+-+-+-+-+-	+-+-+-+

Figure 16 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR 3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR 3DES (3).

Transform #2

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSi Payload containing following values:

	1	2	3
0 1 2 3 4 5 6 7 8	9 0 1 2 3 4 5	6 7 8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-+-+-+-+-+-+-+	-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-	+-+-+
! Next Payload !C!	RESERVED	Payload Length	!
+-+-+-+-+-+-+-+	-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-	+-+-+
! Number of TSs !		RESERVED	!
+-			
!			!
~	<traffic< td=""><td>Selectors></td><td>~</td></traffic<>	Selectors>	~
!			!
+-+-+-+-+-+-+-+	-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-	+-+-+

Figure 17 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 18 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to NUT address.
- A Ending Address field is set to greater that or equal to NUT address.

Part H

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 32: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSr Payload containing following values:

Figure 19 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 20 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to TN1 address.
- An Ending Address field is set to less than or equal to TN1 address.

Possible Problems:

• IKE_AUTH request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload

may be different from this sample.

```
IDi,
[CERT+],
[N(INITIAL_CONTACT)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[IDr],
AUTH,
[CP(CFG_REQUEST)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

Test IKEv2.EN.I.1.1.1.3: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (
` !	
	> IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Judgment #2)
<	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
i	
<	IPsec {Echo Request}
	(Packet #3)
	> IPsec {Echo Reply}
	(Judgment #3)
V	V
N: USE_TRANSPORT_	MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.

7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

• None.

Group 1.2. Use of Retransmission Timers

Test IKEv2.EN.I.1.1.2.1: Retransmissions of IKE_SA_INIT requests

Purpose:

To verify an IKEv2 device retransmits IKE_SA_INIT request using properly Header and Payloads format

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 waits for the event of a timeout on NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposibble to configure the retransmission timer, modifying tester is required.

Test IKEv2.EN.I.1.1.2.2: Stop of retransmission of IKE_SA_INIT requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 waits for the event of a timeout on NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response to the NUT.
- 6. TN1 waits for the event of a timeout on NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Step 7: Judgment #3

The NUT never retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Test IKEv2.EN.I.1.1.2.3: Retransmissions of IKE_AUTH requests

Purpose:

To verify an IKEv2 device retransmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2	2
--------------------------------	---

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposibble to configure the retransmission timer, modifying tester is required.

Test IKEv2.EN.I.1.1.2.4: Stop of retransmission of IKE_AUTH requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
	* wait for the event of a timeout
<	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
	* wait for the event of a timeout
X	never send IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #4)
V	l V
N: USE_TRANSPO	DRT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.

- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_AUTH response to the NUT.
- 8. TN1 waits for the event of a timeout on NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Step 9: Judgment #4

The NUT never retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Group 1.3. State Synchronization and Connection Timeouts

Test IKEv2.EN.I.1.1.3.1: State Synchronization with ICMP messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives ICMP messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TR1	TN1
(End-Node)	(Router)	(End-Node)
 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
 	1	
	1	IPsec {Echo Request} (Packet #3) > IPsec {Echo Reply} (Judgment #3)
		ICMPv6 Destination Unreachable (No route to destination) (Packet #4)
		IPsec {Echo Request} (Packet #5)
	 	> IPsec {Echo Reply} (Judgment #4)
V	V	l V
N: USE_TRANSPO	RT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Packet #4	See below
Packet #5	See Common Packet #19

Packet #4: ICMPv6 Destination Unreachable

IPv6 Header	Source Address	TR1's Global Address on Link A
	Destination Address	NUT's Global Address on Link A
ICMPv6 Header	Туре	1
	Code	0

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. After reception of an Echo Reply from NUT, TR1 transmits ICMP Destination Unreachable Message to the NUT and then TN1 transmits an Echo Request to the NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.3.2: State Synchronization with IKE messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives IKE messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (E	End-Node)
i	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
<	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
<	IPsec {Echo Request} (Packet #2)
	> IPsec {Echo Reply} (Judgment #3)
	cryptographically unprotected IKE message (Packet #3)
	IPsec {Echo Request} (Packet #4)
	> IPsec {Echo Reply} (Judgment #4)
l V	(Judyment #4)
N: USE_TRANSPORT_N	MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See below
Packet #4	See Common Packet # 20

Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link A
	Destination Address	NUT's Global Address on Link X
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	any
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	3 (ESP)
	SPI Size	0
	Notify Message Type	11 (INVALID_SPI)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits a cryptographically unprotected INFORMATIONAL request with Notify payload of type INVALID SPI to the NUT.
- 9. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #4

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms

Possible Problems:

None

Test IKEv2.EN.I.1.1.3.3: Close connections when repeated attempts fail

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
	* wait for the event of a timeout
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #3)
	* wait for the event of a timeout
X	never send IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #3)
V	V
N: USE_TRANSPO	DRT_MODE

Packet #1	See Common Packet #2
-----------	----------------------

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. Repeat Step 5 and Step 6 until the NUT's last restransmission comes.

8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Step 8: Judgment #4

The NUT never retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.3.4: Close connections when receiving INITIAL_CONTACT

This test case was deleted at revision 1.1.0.

Test IKEv2.EN.I.1.1.3.5: Sending Liveness check

This test case was deleted at revision 1.1.0.

Test IKEv2.EN.I.1.1.3.6: Sending Delete Payload for IKE_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when IKE_SA is deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 waits until expiring IKE_SA's lifetime and does not respond to an INFORMATIONAL request with an INFORMATIONAL response for liveness check.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Possible Problems:

• At Step 7, NUT can transmit INFORMATIONAL request with a Delete Payload including 2 (ESP) as Protocol ID, 4 as SPI Size and SPI value to delete CHILD_SA before transmitting an INFORMATIONAL request to delete IKE_SA.

Test IKEv2.EN.I.1.1.3.7: Sending Delete Payload for CHILD_SA

This test case was deleted at revision 1.1.0.

Test IKEv2.EN.I.1.1.3.8: Sending Liveness check with unprotected messages

This test case was deleted at revision 1.1.0.

Group 1.4. Version Numbers and Forward Compatibility

Test IKEv2.EN.I.1.1.4.1: Unrecognized payload types and Critical bit is not set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is not set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

FORUM			
NUT TN1			
(End-Node) (End-Node)			
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)		
l i	(Judgment #1)		
<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)		
	(Packet #1)		
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})		
	(Judgment #2)		
l '	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})		
	(Packet #2)		
	•		
	IDaga (Faha Damaad)		
1 '	IPsec {Echo Request}		
· ·	(Packet #3) IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired		
	(Judgment #3)		
	(Judgillette #5)		
'i'			
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})		
l i	(Judgment #4)		
<	CREATE_CHILD_SA response (HDR, SK {P, N+, SA, Nr, TSi, TSr})		
	(Packet #4)		
· ·	IPsec {Echo Request} (new CHILD_SA)		
· ·	(Packet #5)		
>	IPsec {Echo Reply} (new CHILD_SA)		
	(Judgment #5)		
V			
D: Payload with an in	avalid payload type		
P: Payload with an invalid payload type N: REKEY_SA			
N+: USE_TRANSPORT_MODE			
NT. OOL_INANOI ON I_WOOL			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See Common Pakcet #19

Packet #4: CREATE_CHILD_SA response

II II CILLIII EII	ild_bri response		
IPv6 Header	All fields are same as Common Packet #14 Payload		
UDP Header	All fields are	All fields are same as Common Packet #14 Payload	
IKEv2 Header	All fields are	same as Common Packet #14 Payload	
E payload	Next Payload	Invalid payload type value	
	Other	Other fields are same as Common Packet #14	
Invalid Payload	Next Payoad	41 (N)	
	Critical	0	
	Reserved	0	
	Payload Length	4	
N Payload	All fields are	same as Common Packet #14 Payload	
SA Payload	All fields are same as Common Packet #14 Payload		
Ni, Nr paylaod	All fields are	same as Common Packet #14 Payload	
TSi Payload	All fields are	same as Common Packet #14 Payload	
TSr Payload	All fields are	same as Common Packet #14 Payload	

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is not set.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 13. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 (BASIC)

- 14. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an IKE_SA_INIT response to the NUT.
- 17. Observe the messages transmitted on Link A.
- 18. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 19. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 20. Observe the messages transmitted on Link A.
- 21. Repeat Steps 19 and 20 until lifetime of SA is expired.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is not set.
- 24. Observe the messages transmitted on Link A.
- 25. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NIIT
- 26. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 (BASIC)

- 27. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 28. Observe the messages transmitted on Link A.
- 29. TN1 responds with an IKE_SA_INIT response to the NUT.
- 30. Observe the messages transmitted on Link A.
- 31. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 32. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 33. Observe the messages transmitted on Link A.
- 34. Repeat Steps 32 and 33 until lifetime of SA is expired.
- 35. Observe the messages transmitted on Link A.
- 36. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid

payload's critical flag is not set.

- 37. Observe the messages transmitted on Link A.
- 38. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 39. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 (BASIC)

- 40. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 41. Observe the messages transmitted on Link A.
- 42. TN1 responds with an IKE SA INIT response to the NUT.
- 43. Observe the messages transmitted on Link A.
- 44. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 45. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 46. Observe the messages transmitted on Link A.
- 47. Repeat Steps 45 and 46 until lifetime of SA is expired.
- 48. Observe the messages transmitted on Link A.
- 49. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is not set.
- 50. Observe the messages transmitted on Link A.
- 51. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 52. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part B

Step 15: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 17: Judgment #2

The NUT transmits an IKE AUTH request including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 20 Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 24: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 26: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part C

Step 28: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 30: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 33 Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 37: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 39: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part D

Step 41: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 43: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 46 Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 50: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 52: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

Test IKEv2.EN.I.1.1.4.2: Unrecognized payload types and Critical bit is set

Purpose:

To verify an IKEv2 device rejects the messages with invalid payload types when the invalid type payload's critical bit is set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

FORUM			
NUT TN1			
(End-Node) (End-Node)			
IKE_SA_INIT request (HDR, SAi1, KEi, Ni)			
(Judgment #1)			
IKE_SA_INIT response (HDR, SAr1, KEr, Nr)			
(Packet #1)			
IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})			
(Judgment #2)			
(! acket #2)			
<u> </u>			
< IPsec {Echo Request}			
(Packet #3)			
(Judgment #3)			
<pre> (Codes</pre>			
(Packet #4)			
< IPsec {Echo Request} (new CHILD_SA)			
(Packet #5)			
X IPsec {Echo Reply} (new CHILD_SA)			
(Judgment #5)			
v v			
P: Payload with an invalid payload type			
N: REKEY_SA			
N+: USE_TRANSPORT_MODE			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See Common Pakcet #19

Packet #4: CREATE_CHILD_SA response

" " CICETTE CI	TILD_DITTESPONSE		
IPv6 Header	All fields are	e same as Common Packet #14 Payload	
UDP Header	All fields are	All fields are same as Common Packet #14 Payload	
IKEv2 Header	All fields are	same as Common Packet #14 Payload	
E payload	Next Payload	Invalid payload type value	
	Other	Other fields are same as Common Packet #14	
Invalid Payload	Next Payoad	41 (N)	
	Critical	1	
	Reserved	0	
	Payload Length	4	
N Payload	All fields are	same as Common Packet #14 Payload	
SA Payload	All fields are	same as Common Packet #14 Payload	
Ni, Nr paylaod	All fields are	same as Common Packet #14 Payload	
TSi Payload	All fields are	e same as Common Packet #14 Payload	
TSr Payload	All fields are	e same as Common Packet #14 Payload	

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is set.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 13. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 and Critical bit is set (BASIC)

- 14. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an IKE_SA_INIT response to the NUT.
- 17. Observe the messages transmitted on Link A.
- 18. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 19. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 20. Observe the messages transmitted on Link A.
- 21. Repeat Steps 19 and 20 until lifetime of SA is expired.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is set.
- 24. Observe the messages transmitted on Link A.
- 25. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 26. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 and Critical bit is set (BASIC)

- 27. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 28. Observe the messages transmitted on Link A.
- 29. TN1 responds with an IKE_SA_INIT response to the NUT.
- 30. Observe the messages transmitted on Link A.
- 31. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 32. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 33. Observe the messages transmitted on Link A.
- 34. Repeat Steps 32 and 33 until lifetime of SA is expired.
- 35. Observe the messages transmitted on Link A.
- 36. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid

payload's critical flag is set.

- 37. Observe the messages transmitted on Link A.
- 38. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 39. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 and Critical bit is set (BASIC)

- 40. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 41. Observe the messages transmitted on Link A.
- 42. TN1 responds with an IKE SA INIT response to the NUT.
- 43. Observe the messages transmitted on Link A.
- 44. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 45. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 46. Observe the messages transmitted on Link A.
- 47. Repeat Steps 45 and 46 until lifetime of SA is expired.
- 48. Observe the messages transmitted on Link A.
- 49. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is set.
- 50. Observe the messages transmitted on Link A.
- 51. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to NUT.
- 52. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #5

The NUT never transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part B

Step 15: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 17: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 20: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 24: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 26: Judgment #5

The NUT never transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part C

Step 28: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 30: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 33: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 37: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 39: Judgment #5

The NUT never transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Part D

Step 41: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 43: Judgment #2

The NUT transmits an IKE AUTH request including "ENCR 3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 46: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 50: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 52: Judgment #5

The NUT never transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

Group 1.5. Cookies

Test IKEv2.EN.I.1.1.5.1: Retrying IKE_SA_INIT request with a Notify payload of type COOKIE

Purpose:

To verify an IKEv2 device retries IKE_SA_INIT request using a Notify payload of type COOKIE.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
-----------	-----------

Packet #1: IKE_SA_INIT request

CROCHIT. HILL_	JII III TOQUOST	
IPv6 Header		All fields are same as Common Packet #2
UDP Header		All fields are same as Common Packet #2
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding
		request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	0
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	34 (IKE_SA_INIT)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0

	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	Cookie value

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including a Notify payload of type COOKIE containing following values:

Figure 21 Notify Payload Format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A SPI Size field is set to zero.
- A Notify Message Type field is set to COOKIE (16390).
- A Notification Data field is set to the TN1 supplied cookie data.

Possible Problems:

Test IKEv2.EN.I.1.1.5.2: Interaction of COOKIE and INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles a series of the Initial Exchanges using a Notify ayload of type COOKIE and type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6, 2.7 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, configure the IKE_SA parameters as described as following. KEi payload must carry either D-H Group 14 public key value or D-H Group 24 public key value.

	IKE_SA Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:


```
Sequence #1:
  NUT
                  TN1
(End-Node)
               (End-Node)
         ----->| IKE_SA_INIT request (HDR, SAi1(DH#2, DH#14), KEi(DH#14), Ni)
                  | (Judgment #1)
    |<----- | IKE_SA_INIT response (HDR, N(COOKIE))</pre>
                   | (Packet #1)
         ----->| IKE_SA_INIT request (HDR, N(COOKIE), SAi1(DH#2, DH#14), KEi(DH#14), Ni)
                   | (Judgment #2)
               ----| IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD(DH#2)))
                   | (Packet #2)
           *1----->| IKE_SA_INIT request (HDR, SAi1(DH#2, DH#14), KEi'(DH#2), Ni)
           *2----->| IKE_SA_INIT request (HDR, N(COOKIE), SAi1(DH#2, DH#14), KEi'(DH#2), Ni)
                   | (Judgment #3)
    *1) If the NUT send IKE_SA_INIT request (HDR, SAi1, KEi', Ni), go to Sequence #2.
    *2) If the NUT send IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi', Ni), go to Sequence #3.
    Otherwise, this test is failed.
Sequence #2:
  NUT
                 TN1
(End-Node)
              (End-Node)
    |<----- | IKE_SA_INIT response (HDR, N(COOKIE'))</pre>
                   | (Packet #3)
        ------| IKE_SA_INIT request (HDR, N(COOKIE'), SAi1(DH#2, DH#14), KEi'(DH#2), Ni)
                   | (Judgment #4)
    Go to Sequence #3.
Sequence #3:
  NUT
                  TN1
(End-Node)
               (End-Node)
                   -| IKE_SA_INIT response (HDR, SAr1(DH#2), KEr(DH#2), Nr)
                 | (Packet #4)
            ----->| IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                  | (Judgment #5)
                   ٧
N: USE_TRANSPORT_MODE
It is possible to use DH#24 instead of DH#14.
```

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #2

Packet #1: IKE_SA_INIT response

IPv6 Header		Same as the common packet #1
UDP Header	Same as the common packet	
IKEv2 Header	Other fields are same as the common packet #1	
	Next Payload	41 (N)
N Payload	Next Payload	0 (No Next Payload)
	Critical	0

Reserved	0
Payload Length	Any
Protocol ID	0
SPI Size	0
Notify Message Type	COOKIE (16390)
Notification Data	Cookie value

Packet #2: IKE_SA_INIT response

IPv6 Header	Same as the common packet #1	
UDP Header	Same as the common packet #1	
IKEv2 Header	Other fields	are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	0 (No Next Payload)
	Critical 0	
	Reserved 0	
	Payload Length 10	
	Protocol ID 0	
	SPI Size 0	
	Notify Message Type INVALID_KE_PAYLOAD (17)	
	Notification Data	The accepted D-H Group # (2)

Packet #3: IKE_SA_INIT response

IPv6 Header	Same as the common packet #1		
UDP Header	Same as the common packet #1		
IKEv2 Header		Other fields are same as the common packet #1	
	Next Payload	41 (N)	
N Payload	Next Payload 0 (No Next Payload		
	Critical		
	Reserved 0		
	Payload Length Any		
	Protocol ID 0		
	SPI Size 0		
	Notify Message Type	COOKIE (16390)	
	Notification Data	Different cookie value from Packet #1's cookie value.	

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. If the IKE_SA_INIT request from NUT includes a Notify payload of type COOKIE, TN1 responds with an IKE_SA_INIT response. The message has a different cookie value from the cookie value at Step3.
 - A) Observe the messages transmitted on Link A.
 - B) TN1 responds with an IKE_SA_INIT response.
- 8. If the IKE_SA_INIT request from NUT does not include a Notify payload of type COOKIE, TN1 responds with an IKE_SA_INIT response.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as proposed algorithms. KEi payload has D-H Group 14 public key value. Depending on configuration, it is possible to use D-H Group 24 for SA proposal and KEi payload instead of D-H Group 14.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request. The message has a Notify payload of type COOKIE with the cookie data supplied by the responder as the first payload. All other payloads are unchanged.

Step 6: Judgment #3

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 5. All other payloads are unchanged.

Step 7A: Judgment #4

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. The message must have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 7. All other payloads are unchanged.

Step 9: Judgment #5

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.I.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Responder

Purpose:

To verify an IKEv2 device properly handles a series of the Initial Exchanges using a Notify ayload of type COOKIE and type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6, 2.7 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, configure the IKE_SA parameters as described as following. KEi payload must carry either D-H Group 14 public key value or D-H Group 24 public key value.

	IKE_SA Algorithms			
	Encryption PRF Integrity D-H Group			
Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

FORUM
NUT TN1
(End-Node) (End-Node)
IKE_SA_INIT response (HDR, SAr1(DH#2), Ker(DH#2), Nr) (Packet #4)
 > IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
l V V
N: USE_TRANSPORT_MODE
It is possible to use DH#24 instead of DH#14.

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #2

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as the common packet #1		
UDP Header	Same as	the common packet #1	
IKEv2 Header	Other fields are same as	the common packet #1	
	Next Payload	41 (N)	
N Payload	Next Payload	0 (No Next Payload)	
	Critical	0	
	Reserved		
	Payload Length Any		
	Protocol ID		
	SPI Size 0		
	Notify Message Type COOKIE (16390)		
	Notification Data	Cookie value	

Packet #2: IKE_SA_INIT response

IPv6 Header	Same as the common packet #1		
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are same as the common packet #1		
	Next Payload	41 (N)	
N Payload	Next Payload	0 (No Next Payload)	
	Critical	0	
	Reserved	0	

Payload Length	10
Protocol ID	0
SPI Size	0
Notify Message Type	INVALID_KE_PAYLOAD (17)
Notification Data	The accepted D-H Group # (2)

Packet #3: IKE_SA_INIT response

IPv6 Header	Same as the common packet #1		
UDP Header	Same as the common packet #1		
IKEv2 Header		Other fields are same as the common packet #1	
	Next Payload 41 (N)		
N Payload	Next Payload	0 (No Next Payload)	
	Critical	0	
	Reserved		
	Payload Length Any		
	Protocol ID 0		
	SPI Size 0		
	Notify Message Type	COOKIE (16390)	
	Notification Data	Different cookie value from Packet #1's cookie value.	

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID KE PAYLOAD to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response. The message has a different cookie value from the cookie value at Step3.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 responds with an IKE_SA_INIT response.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE SA INIT request including "ENCR 3DES",

"PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as proposed algorithms. KEi payload has D-H Group 14 public key value. Depending on configuration, it is possible to use D-H Group 24 for SA proposal and KEi payload instead of D-H Group 14.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request. The message has a Notify payload of type COOKIE with the cookie data supplied by the responder as the first payload. All other payloads are unchanged.

Step 6: Judgment #3

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 5.

Step 8: Judgment #4

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. The message must have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 7. All other payloads are unchanged.

Step 10: Judgment #5

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Group 1.6. Cryptographic Algorithm Negotiation

Test IKEv2.EN.I.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part H, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA_INIT exchanges Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	DELETED	DELETED	DELETED	DELETED
Part C	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part E	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14
Part F	ENCR_3DES	PRF_HMAC_SHA2_256	AUTH_HMAC_SHA1_96	Group 2
Part G	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA2_256_128	Group 2
Part H	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 24

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

This test case was deleted at revision 1.1.0.

Part C: PRF PRF AES128 CBC (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 13. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: D-H Group Group 14 (ADVANCED)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: PRF PRF_HMAC_SHA2_256 (ADVANCED)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: Integrity Algorithm AUTH_HMAC_SHA2_256_128 (ADVANCED)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link A.

Part H: D-H Group Group 24 (ADVANCED)

- 29. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 30. Observe the messages transmitted on Link A.
- 31. TN1 responds with an IKE_SA_INIT response to the NUT.
- 32. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 1.

Part B

This test case was deleted at revision 1.1.0.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 9.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_AES_XCBC_96" and "D-H Group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 13.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 14" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 17.

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA2_256", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 21.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA2_256_128" and "D-H Group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 25.

Part H

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 24" as proposed algorithms.

Step 32: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 29.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part G, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_AUTH exchanges Algorithms		
	Encryption	Integrity	Extended Sequence Numbers
Part A	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Part B	ENCR_AES_CTR	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Part C	ENCR_NULL	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Part D	ENCR_3DES	AUTH_AES_XCBC_96	No Extended Sequence Numbers
Part E	ENCR_3DES	NONE	No Extended Sequence Numbers
Part F	ENCR_3DES	AUTH_HMAC_SHA1_96	Extended Sequence Numbers
Part G	ENCR_3DES	AUTH_HMAC_SHA2_256_128	No Extended Sequence Numbers

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

N	UT TN	11
(End	-Node) (End-	Node)
	! !	
	>	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)</pre>
	 <i><</i>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
		(Packet #1)
	j i	
	>	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})</pre>
	<u> </u>	(Judgment #2)
	<	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)</pre>
	 	(Facket #2)
	 <	IPsec {Echo Request}
	j i	(Packet #3)
	>	IPsec {Echo Reply}
	!	(Judgment #3)
,	 	
	۷ \	
N: U	SE_TRANSPORT_MODE	

Packet #2	See Common Packet #4		
Packet #3	See Common Packet #19		

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 8. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 responds with an IKE_SA_INIT response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 13. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 14. Observe the messages transmitted on Link A.

Part C: Encryption Algorithm ENCR_NULL (ADVANCED)

- 15. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 responds with an IKE_SA_INIT response to the NUT.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 20. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 21. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 22. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 23. Observe the messages transmitted on Link A.
- 24. TN1 responds with an IKE_SA_INIT response to the NUT.
- 25. Observe the messages transmitted on Link A.
- 26. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 27. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 28. Observe the messages transmitted on Link A.

Part E: Integrity Algorithm NONE (ADVANCED)

- 29. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 30. Observe the messages transmitted on Link A.
- 31. TN1 responds with an IKE_SA_INIT response to the NUT.
- 32. Observe the messages transmitted on Link A.
- 33. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 34. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 35. Observe the messages transmitted on Link A.

Part F: Extended Sequence Numbers (ADVANCED)

- 36. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 37. Observe the messages transmitted on Link A.
- 38. TN1 responds with an IKE_SA_INIT response to the NUT.
- 39. Observe the messages transmitted on Link A.
- 40. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 41. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 42. Observe the messages transmitted on Link A.

Part G: Integrity Algorithm AUTH_HMAC_SHA2_256_128 (ADVANCED)

- 43. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 44. Observe the messages transmitted on Link A.
- 45. TN1 responds with an IKE_SA_INIT response to the NUT.
- 46. Observe the messages transmitted on Link A.
- 47. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 48. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 49. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part B

Step 9: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 11: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_AES_CTR", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part C

Step 16: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 18: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_NULL", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 21: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part D

Step 23: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 25: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 28: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part E

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 32: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "NONE" and "No Extended Sequence Numbers" as proposed algorithms. However, the transform indicating "NONE" can be omitted.

Step 35: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part F

Step 37: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 39: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1" and "Extended Sequence Numbers" as proposed algorithms.

Step 42: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part G

Step 44: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 46: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA2_256_128" and "No Extended Sequence Numbers" as proposed algorithms.

Step 49: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

Test IKEv2.EN.I.1.1.6.3: Sending Multiple Transforms for IKE_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_SA_INIT request with multiple transforms for IKE_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

	IKE_SA_INIT exchanges Algorithms						
	Encryption	PRF	Integrity	D-H Group			
Part A	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2			
Part B	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2			
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Group 2			
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24			

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (ADVANCED)

- 3. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (ADVANCED)

5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.

6. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (ADVANCED)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "PRF_AES128_CBC"AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "D-H Group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as accepted algorithms. Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Possible Problems:

Test IKEv2.EN.I.1.1.6.4: Sending Multiple Proposals for IKE_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple proposals for CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration.

	IKE_SA_INIT exchanges Algorithms						
	Proposal	Protocol ID	Encryption	PRF	Integrity	D-H Group	
Part A	Proposal #1	IKE	ENCR_ 3DES	PRF_ HMAC_SHA1	AUTH_ HMAC_SHA1_96	Group 2	
	Proposal #2	IKE	ENCR_ AES_CBC	PRF_ AES128_CBC	AUTH_ AES_XCBC_96	Group 14 or Group 24	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request with 2 SA Proposals. SA Proposal #1 (ESP) includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2".

SA Proposal #2 (ESP) includes "ENCR_AES_CBC", "PRF_AES128_CBC", "AUTH_AES_XCBC_96" and "D-H Group 14". Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Possible Problems:

Test IKEv2.EN.I.1.1.6.5: Sending Multiple Transforms for CHILD_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple transforms for CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration.

	IKE_AUTH exchanges Algorithms			
	Encryption	Integrity	ESN	
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN	
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN	
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 2. Observe the messages transmitted on Link A.
- 3. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1.

4. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 6. Observe the messages transmitted on Link A.
- 7. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1.
- 8. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 10. Observe the messages transmitted on Link A.
- 11. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "Extended Sequence Number" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.I.1.1.6.6: Sending Multiple Proposals for CHILD_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple proposals for CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the following configuration.

	IKE_AUTH exchanges Algorithms				
	Proposal Protocol Encryption Integrity ESN				
Part A	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
rart A	Proposal #2	ESP	ENCR_AES_CBC	AUTH_AES_XCBC_96	ESN

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
	·

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" in SA Proposal #1 (ESP) and then "ENCR_AES_CBC", "AUTH_AES_XCBC_96" and "Extended Sequence Numbers" in SA Proposal #2 (ESP) as accepted algorithms.

Possible Problems:

Test IKEv2.EN.I.1.1.6.7: Receipt of INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA response with a Notify payload of type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration with enabling PFS by proposing D-H Group 2 and D-H Group 14 when rekeying. KEi payload must carry D-H Group 14 public key value in CREATE_CHILD_SA request. It is possible to use D-H Group 24 instead of D-H Group 14.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TM	FORUM
NUT TN1	
(End-Node) (End-Node)	
	, SAr1, KEr, Nr)
> IKE_AUTH request (HDR, SK (Judgment #2)	
< KE_AUTH response (HDR, SF 	({IDr, AUTH, N+, SAr2, TSi, TSr})
	 !
(Packet #3) IPsec {Echo Reply} (Judgment #3)	repeat Echo exchange until lifetime of SA is expired
<u> </u>	
	HDR, SK {N, N+, SA(DH#2, DH#14), Ni, KEi(DH#14), TSi, TSr})
	(HDR, SK {N(INVALID_KE_PAYLOAD(DH#2))})
	HDR, SK {N, N+, SA(DH#2, DH#14), Ni, KEi'(DH#2), TSi, TSr})
l V V	
N: REKEY_SA	
N+: USE_TRANSPORT_MODE	
It is possible to use DH#14 instead of DH#24.	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below

Packet #4: CREATE_CHILD_SA response

IPv6 Header		Same as Common Packet #14	
UDP Header		Same as Common Packet #14	
IKEv2 Header		Same as Common Packet #14	
E Payload		Same as Common Packet #14	
N Payload	Next Payload	0 (No Next Payload)	
	Critical	0	
	Reserved	0	
	Payload Length 10		
	Protocol ID	0	
	SPI Size 0		
	Notify Message Type	INVALID_KE_PAYLOAD (17)	
	Notification Data	The accepted D-H Group # (2)	

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH

response to the NUT

- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type INVALID KE PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers", "D-H Group 2" and "D-H Group 14" as proposed algorithms. KEi payload must carry "D-H Group 14" public key value. Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers", "D-H Group 2" and "D-H Group 14" as proposed algorithms and a Key Exchange payload which contains "D-H Group 2" public key value.

Possible Problems:

Test IKEv2.EN.I.1.1.6.8: Receipt of NO_PROPOSAL_CHOSEN

This test case was deleted at revision 1.1.0.

Test IKEv2.EN.I.1.1.6.9: Response with inconsistent SA proposal for IKE_SA

Purpose:

To verify an IKEv2 device properly handles a response with a SA payload which is inconsistent with one of its proposals.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
 	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
X V	 IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
N: USE_TRANSPOR	RT_MODE

Packet #1

See below

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as the Common Packet #2
UDP Header	Same as the Common Packet #2
IKEv2 Header	Same as the Common Packet #2
SA Payload	See below
KEi Payload	Same as the Common Packet #2
Ni Payload	Same as the Common Packet #2

SA Payload	Next Payload			34 (KE)
	Critical			0
	Reserved			0
	Payload Length			44
	Proposal #1 SA Proposal Next Payload		0 (last)	
	Reserved		0	
	Proposal Length		40	
			Proposal #	1
			Protocol ID	1 (IKE)

	SPI Size		0
	# of Transforms		4
	SA Transform		See below
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	2 (PRF)
		Reserved	0
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

SA Transform	Next Payload	3 (more)	
	Reserved	0	
	Transform Lengt	12	
	Transform Type	1 (ENCR)	
	Reserved	0	
	Transform ID	12 (AES_CBC)	
	SA Attribute	14 (Key Length)	
		Attribute Value	128

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT. But the response includes a SA payload which has a different Transform ID from the proposed one.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT never transmits an IKE_AUTH request.

Possible Problems:

• Step 4
The NUT may transmit or retransmit an IKE_SA_INIT request.

Test IKEv2.EN.I.1.1.6.10: Response with inconsistent proposal for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles a response with a SA payload which is inconsistent with one of its proposals.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	> IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
<	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
<	IPsec {Echo Request} (Packet #3)
į į	(Judgment #3)
V	V
N: USE_TRANSF	ORT_MODE

Packet #1 See Common Packet #2
Packet #2 See below
Packet #3 See Common Packet #19

Packet #2: IKE_AUTH response

IPv6 Header	Same as the Common Packet #4
UDP Header	Same as the Common Packet #4
IKEv2 Header	Same as the Common Packet #4
E Payload	Same as the Common Packet #4
IDr Payload	Same as the Common Packet #4
AUTH Payload	Same as the Common Packet #4

N Payload	Same as the Common Packet #4
SA Payload	See below
TSi Payload	Same as the Common Packet #4
TSr Payload	Same as the Common Packet #4

SA Payload	Next Payload				44 (TSi)
•	Critical			0	
	Reserved				0
	Payload Leng	gth			44
	Proposal #1	SA Proposal	Next Payload		0 (last)
	•	-	Reserved		0
			Proposal Length	1	40
			Proposal #		1
			Protocol ID		3 (ESP)
			SPI Size		4
			# of Transforms	}	3
			SA Transform		See below
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (Extended Sequence Number)
				Reserved	0
				Transform ID	0 (No Extended Sequence Number)

SA Transform	Next Payload	3 (more)	
	Reserved	0	
	Transform Lengt	12	
	Transform Type	1 (ENCR)	
	Reserved	0	
	Transform ID		12 (AES_CBC)
	SA Attribute Attribute Type		14 (Key Length)
		Attribute Value	128

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_AUTH response to the NUT. But the response includes a SA payload which has a different Transform ID from the proposed one.
- 6. TN1 transmits an Echo Request with IPsec ESP using ENCR_AES_CBC and AUTH_HMAC_SHA1_96.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT never transmits an Echo Reply with IPsec ESP using ENCR_AES_CBC and AUTH_HMAC_SHA1_96.

Possible Problems:

• Step 7
The NUT may transmit or retransmit an IKE_AUTH request. And the NUT may notify INVALID_SPI.

Test IKEv2.EN.I.1.1.6.11: Receipt of INVALID_KE_PAYLOAD in Initial Exchange

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT response with a Notify payload of type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, configure the IKE_SA parameters as described as following. KEi payload must carry D-H Group 14 public key value. It is possible to use D-H Group 24 instead of D-H Group 14.

	IKE_SA Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
-----------	-----------

Packet #1: IKE_SA_INIT response

IPv6 Header		Same as Common Packet #2
UDP Header		Same as Common Packet #2
IKEv2 Header		Same as Common Packet #2
	IKE_SA Responder's SPI	See each Part
N Payload	Next Payload	0 (No Next Payload)

Critical	0
Reserved	0
Payload Length	10
Protocol ID	0
SPI Size	0
Notify Message Type	INVALID_KE_PAYLOAD (17)
Notification Data	The accepted D-H Group # (2)

Part A: IKE_SA Responder's SPI is zero (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT. The message's IKE_SA Responder's SPI is set to zero.
- 4. Observe the messages transmitted on Link A.

Part B: IKE_SA Responder's SPI is not zero (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT. The message's IKE_SA Responder's SPI is set to one.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as proposed algorithms. KEi payload must carry "D-H Group 14" public key value. Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. All other payloads are unchanged.

Part B

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including

"ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as proposed algorithms. KEi payload must carry "D-H Group 14" public key value. Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. All other payloads are unchanged.

Possible Problems:

Test IKEv2.EN.I.1.1.6.12: Creating an IKE_SA without a CHILD_SA

Purpose:

To verify an IKEv2 device can handles a failure of creating a CHILD_SA during the IKE_AUTH exchange.

References:

• [RFC 4718] - Sections 4.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
(End-Node)
               (End-Node)
     ---->| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                 | (Judgment #1)
       ----- IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Packet #1)
         ----->| IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                  | (Judgment #2)
            -----| IKE_AUTH response (HDR, SK {IDr, AUTH, N(NO_PROPOSAL_CHOSEN)})
                   | (Packet #2)
        -----| INFORMATIONAL request (HDR, SK {})
                  | (Packet #3)
              ---->| INFORMATIONAL response (HDR, SK {})
                  | (Judgment #3)
N: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #17

Packet #4: IKE_AUTH response

IPv6 Header		Same as Common Packet #4
UDP Header		Same as Common Packet #4
IKEv2 Header		Same as Common Packet #4
E Payload		Same as Common Packet #4
IDr Payload	Next Payload	39 (AUTH)
	Critical	0

	1 0110111	
	Reserved	0
	Payload Length	24
	ID Type	IPV6_ADDR
	Reserved	0
	Identification Data	TN1's Global Address on Link X
AUTH Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
	Auth Method	2 (SK_MIC)
	Reserved	0
	Authentication Data	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	NO_PROPOSAL_CHOSEN (14)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response with a Notify payload of type NO_PROPOSAL_CHOSEN to the NUT.
- 6. TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

Group 1.7. Traffic Selector Negotiation

Test IKEv2.EN.I.1.7.1: Narrowing the range of members of the set of traffic selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

• [RFC4306] - Section 2.9

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Packet #1)
 < 	Psec {TCP SYN} (Packet #3) IPsec {TCP RST} (Judgment #3)
)	
V	V
N: USE_TRANSF	PORT_MODE

Packet #1	See Common Packet #2
Packet #2	See below

Packet #3	See below
Packet #4	See Common Packet #19

Packet #2: IKE_AUTH response

TSi Payload	T		0 (10) (0 4000 041) (05)
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (tcp)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload			
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (tcp)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Packet #3: TCP-SYN

IPv6 Header	Source Address	TN1's Global Address on Link X	
	Destination Address	NUT's Global Address on Link A	
ESP	Security Parameter Index	CHILD_SA's SPI value used by	
		this message	
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.	
	Payload Data	Subsequent data encrypted by underlying encryption algorithm	
	Padding	Any value which to be a multip of the encryption block si.	
	Pad Length	The length of the Padding field	
	Next Header	6 (TCP)	
	Integrity Check Value	The cryptographic checksum of	
		the entire message	
TCP Header	Source Port	500	
	Destination Port	500	
	Flags	SYN (0x02)	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port on NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT never transmit an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None.

Group 1.8. Error Handling

Test IKEv2.EN.I.1.1.8.1: INVALID_IKE_SPI

This test case was deleted at revision 1.1.0.

Test IKEv2.EN.I.1.1.8.2: INVALID_SELECTORS

This test case was deleted at revision 1.1.0.

Group 1.10 Authentication of the IKE_SA

Test IKEv2.EN.I.1.1.10.1: Sending CERT Payload

Purpose:

To verify an IKEv2 device handles CERTREQ payload and transmits CERT payload properly.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Land	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	NUT's global address on Link A
Local	Part B	X.509 Certificate - Signature	ID_FQDN	nut.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	nut@example.com

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
-----------	-----------

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as the Common Packet #2
UDP Header	Same as the Common Packet #2
IKEv2 Header	Same as the Common Packet #2
SA Payload	Same as the Common Packet #2

KE Payload	Same as the Common Packet #2		
Nr Payload	Next Payload 38 (CERTREC		
	Other fields are same as the Common Packet		
CERTREQ Payload	See below		

CERTREQ Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Authority	any

Part A: ID_IPV6_ADDR (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT request from the NUT, TN1 responds with an IKE_SA_INIT response with a CERTREQ payload to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: ID_FQDN (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT request from the NUT, TN1 responds with an IKE SA INIT response with a CERTREQ payload to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: ID_RFC822_ADDR (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT request from the NUT, TN1 responds with an IKE_SA_INIT response with a CERTREQ payload to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request. The request includes an ID payload with ID_IPV6_ADDR and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request. The request includes an ID payload with ID_FQDN and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request. The request includes an ID payload with ID_RFC822_ADDR and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Possible Problems:

None.

Test IKEv2.EN.I.1.1.10.2: Sending CERTREQ Payload

Purpose:

To verify an IKEv2 device transmits CERTREQ payload and handles CERT payload properly.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Remote	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	TN1's global address on Link A
Kemote	Part B	X.509 Certificate - Signature	ID_FQDN	tn.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	tn@example.com

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: ID_IPV6_ADDR (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: ID_FQDN (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

- 7. TN1 responds with an IKE_SA_INIT response to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: ID RFC822 ADDR (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Possible Problems:

Test IKEv2.EN.I.1.1.10.3: RSA Digital Signature

Purpose:

To verify an IKEv2 device authenticates the corresponding node by RSA Digital Signature.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Domoto	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	TN1's global address on Link A
Remote	Part B	X.509 Certificate - Signature	ID_FQDN	tn.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	tn@example.com

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #19

IPv6 Header	Sa	ame as Common Packet #4
UDP Header	Sa	ame as Common Packet #4
IKEv2 Header	Sa	ame as Common Packet #4
E Payload	Same as Common Packet #4	
IDr Payload	Next Payload	37 (CERT)
	Other fields are same	as the Common Packet #4
CERT Payload		See below
AUTH Payload	Sa	ame as Common Packet #4
N Payload	Sa	ame as Common Packet #4
SA Payload	Sa	ame as Common Packet #4
TSi Payload	Sa	ame as Common Packet #4
TSr Payload	Same as Common Packet #4	

CERT Payload	Next Payload	39 (AUTH)	
	Critical	0	
	Reserved	0	
	Payload Length	Any	
	Certificate Encoding	4 (X.509 Certificate - Signature)	
	Certificate Data	TN1's X.509 Certificate	

Part A: ID_IPV6_ADDR (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response including an IDr payload as described above and a CERT payload to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Part B: ID FODN (ADVANCED)

- 8. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 responds with an IKE_SA_INIT response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response including an IDr payload as described above and a CERT payload to the NUT
- 13. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 14. Observe the messages transmitted on Link A.

Part C: ID_RFC822_ADDR (ADVANCED)

- 15. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 responds with an IKE_SA_INIT response to the NUT.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response including an IDr payload as described above and a CERT payload to the NUT
- 20. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 21. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Part B

Step 9: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 11: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Step 14: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Part C

Step 16: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 18: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Step 21: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH HMAC SHA1 96.

Possible Problems:

Test IKEv2.EN.I.1.1.10.4: HEX string PSK

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 2.15

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Key Value
Remote	0xabadcafeabadcafeabadcafeabadcafe (128 bit binary string)

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Group 1.11. Invalid values

Test IKEv2.EN.I.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
	All RESERVED fields are set to one.

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response whose RESERVED fields are set to one to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.I.1.1.11.2: Non zero RESERVED fields in IKE_AUTH response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 NUT: 1: 11 1 6

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
	All RESERVED fields are set to one.
Packet #3	See Common Packet #19

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response whose RESERVED fields are set to one to the NUT

- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.11.3: Version bit is set

Purpose:

To verify an IKEv2 device ignores the content of Version bit in IKE messages.

References:

• [RFC 4306] - Sections 3.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
	Version bit is set to one.

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response whose Version bit is set to one to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.11.4: Unrecognized Notify Message Type of Error

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type intended for reporting error.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

```
NUT
                  TN1
(End-Node)
               (End-Node)
     ----->| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                 | (Judgment #1)
       ----- IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Packet #1)
        ----->| IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                 | (Judgment #2)
         ----- IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr, N+})
                  | (Packet #2)
        -----| IPsec {Echo Request}
                  | (Packet #3)
                  | no IPsec {Echo Reply}
                   | (Judgment #3)
N: USE TRANSPORT MODE
N+: Notify Payload with unrecognized Notify Message Type
```

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #19

Packet #2: IKE_AUTH response

IPv6 Header	All fields are same as Common Packet #4
UDP Header	All fields are same as Common Packet #4
IKEv2 Header	All fields are same as Common Packet #4
E Payload	All fields are same as Common Packet #4
IDr Payload	All fields are same as Common Packet #4

AUTH Payload	All fields are same as Commo	on Packet #4
N Payload	All fields are same as Commo	on Packet #4
SA Payload	All fields are same as Commo	on Packet #4
TSi Payload	All fields are same as Commo	on Packet #4
TSr paylaod	Next Payload	41 (Notify)
	Other fields are same as Commo	on Packet #4
N Payload	Next Payload	0
	Critical	
	Reserved	0
	Payload Length	8
	Procotol ID	0
	SPI Size	0
	Notify Message Type	16383

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response with a Notify payload of unrecognized Notify Message Type value.
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT never transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

• None.

Test IKEv2.EN.I.1.1.11.5: Unrecognized Notify Message Type of Status

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type intended for reporting status.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

```
NUT
                  TN1
(End-Node)
               (End-Node)
     ----->| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                 | (Judgment #1)
       ----- IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Packet #1)
        ----->| IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                 | (Judgment #2)
           ----- IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr, N+})
                  | (Packet #2)
        -----| IPsec {Echo Request}
                 | (Packet #3)
            ---->| IPsec {Echo Reply}
                  | (Judgment #3)
N: USE TRANSPORT MODE
N+: Notify Payload with unrecognized Notify Message Type
```

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #19

Packet #2: IKE_AUTH request

IPv6 Header	All fields are same as Common Packet #4
UDP Header	All fields are same as Common Packet #4
IKEv2 Header	All fields are same as Common Packet #4
E Payload	All fields are same as Common Packet #4
IDr Payload	All fields are same as Common Packet #4

AUTH Payload	All fields are same as Commo	on Packet #4
N Payload	All fields are same as Commo	on Packet #4
SA Payload	All fields are same as Commo	on Packet #4
TSi Payload	All fields are same as Commo	on Packet #4
TSr paylaod	Next Payload	41 (Notify)
	Other fields are same as Commo	on Packet #4
N Payload	Next Payload	0
	Critical	
	Reserved	0
	Payload Length	8
	Procotol ID	0
	SPI Size	0
	Notify Message Type	65535

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response with a Notify payload of unrecognized Notify Message Type value.
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

• None.

Group 2. The CREATE_CHILD_SA Exchange

Group 2.1. Header and Payload Formats

Test IKEv2.EN.I.1.2.1.1: Sending CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device transmits CREATE_CHILD_SA request using properly Header and Payloads format.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	TOROM
NUT T	N1
(End-Node) (End	-Node)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	(Judgment #1)
<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l į	(Packet #1)
l	
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
	(Judgment #2)
<	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
	(Packet #2)
	••
!	
<	IPsec {Echo Request}
!	(Packet #3)
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired
	Udgment #3)
	l CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
	(Judgment #4)
	(oddyment #4)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ı V
,	•
N: REKEY_SA	
N+: USE_TRANSPORT_MO	DE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired for 30 seconds.
- 9. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 10. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 15. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 16. Observe the messages transmitted on Link A.
- 17. Repeat Steps 15 and 16 until lifetime of SA is expired for 30 seconds.
- 18. Observe the messages transmitted on Link A.

Part C: Notify Payload (REKEY_SA) Format (BASIC)

- 19. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. TN1 responds with an IKE_SA_INIT response to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 24. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 24 and 25 until lifetime of SA is expired for 30 seconds.
- 27. Observe the messages transmitted on Link A.

Part D: Notify Payload (USE_TRANSPORT_MODE) Format (BASIC)

- 28. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 29. Observe the messages transmitted on Link A.
- 30. TN1 responds with an IKE_SA_INIT response to the NUT.
- 31. Observe the messages transmitted on Link A.
- 32. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 33. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 34. Observe the messages transmitted on Link A.
- 35. Repeat Steps 33 and 34 until lifetime of SA is expired for 30 seconds.
- 36. Observe the messages transmitted on Link A.

Part E: SA Payload Format (BASIC)

- 37. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 38. Observe the messages transmitted on Link A.
- 39. TN1 responds with an IKE_SA_INIT response to the NUT.
- 40. Observe the messages transmitted on Link A.
- 41. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 42. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 43. Observe the messages transmitted on Link A.
- 44. Repeat Steps 42 and 43 until lifetime of SA is expired for 30 seconds.
- 45. Observe the messages transmitted on Link A.

Part F: Nonce Payload Format (BASIC)

- 46. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 47. Observe the messages transmitted on Link A.
- 48. TN1 responds with an IKE SA INIT response to the NUT.
- 49. Observe the messages transmitted on Link A.
- 50. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 51. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 52. Observe the messages transmitted on Link A.
- 53. Repeat Steps 51 and 52 until lifetime of SA is expired for 30 seconds.
- 54. Observe the messages transmitted on Link A.

Part G: TSi Payload Format (BASIC)

- 55. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 56. Observe the messages transmitted on Link A.
- 57. TN1 responds with an IKE_SA_INIT response to the NUT.
- 58. Observe the messages transmitted on Link A.

- 59. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 60. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 61. Observe the messages transmitted on Link A.
- 62. Repeat Steps 60 and 61 until lifetime of SA is expired for 30 seconds.
- 63. Observe the messages transmitted on Link A.

Part H: TSr Payload Format (BASIC)

- 64. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 65. Observe the messages transmitted on Link A.
- 66. TN1 responds with an IKE_SA_INIT response to the NUT.
- 67. Observe the messages transmitted on Link A.
- 68. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 69. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 70. Observe the messages transmitted on Link A.
- 71. Repeat Steps 69 and 70 until lifetime of SA is expired for 30 seconds.
- 72. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted IKE Header containing following values:

Figure 22 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA
 Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to CREATE_CHILD_SA (36).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to the value incremented the previous IKE message's Message ID by one.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 11: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 13: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 18: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted Encrypted Payload containing following values:

Figure 23 Encrypted payload

- A Next Payload field is set to N Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.

- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 25: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 27: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted Notify Payload containing following values:

Figure 24 Notify Payload format

- A Next Payload field is set to N Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 12 bytes for this REKEY SA.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to the size of CHILD_SA Inbound SPI value to be rekeyed. It is 4 bytes for ESP.

- A Notify Message Type field is set to REKEY_SA (16393).
- A Security Parameter Index field is set to SPI value to be rekeyed.
- A Notification Data field is empty.

Part D

Step 29: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 31: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 34: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 36: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted Notify Payload containing following values:

Figure 25 Notify Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 8 bytes for USE TRANSPORT MODE.
- A Protocol ID field is set to undefined (0).
- A SPI Size field is set to zero.
- A Notify Message Type field is set to USE_TRANSPORT_MODE (16391)

Part E

Step 38: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 40: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 43: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 45: Judgment #4

			1		2		3		
	0 1 2 3	4 5 6 7	7890	1 2 3 4	5 6 7 8 9 0 1 2 3	4 5 6 7	8 9 0 1		
	! Next	44	!0!	0	! Length	40	!		ļ
	! 0		!	0	-+-+-+-+-+- ! Length	36	+-+-+-+		
	+-+-+-+ ! Number		+-+-+-+ ! Prot		-+-+-+-+-+-+- ! SPI Size 4				
	+-+-+-+ ! SPI val	-+-+-+- ue	.+-+-+-+	-+-+-+	-+-+-+-+-+-+-	+-+-+-	+-+-+-+ !		
	! 3		!	0	-+-+-+-+-+-+- ! Length	8	+-+-+-+		
Transform 	! Type 1		!	0		3	(3DES) !	Proposal	SA Payload
	! 3		!	0	-+-+-+-+-+-+- ! Length	8	+-+-+-+ !		
Transform 	! Type 3		!	0		2	(SHA1) !		
	! 0		!	0	-+-+-+-+-+-+- ! Length	8	+-+-+-+ !		
Transform 	! Type 5				-+-+-+-+-+- ! Transform ID	0	+-+-+-+ (No) !		

Figure 26 SA Payload contents

The NUT transmits a CREATE_CHILD_SA request including properly formatted SA Payload containing following values (refer following figures):

Figure 27 SA Payload format

- A Next Payload field is set to Ni Payload (40).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 28 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

Figure 29 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.

- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 47: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 49: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 52: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 54: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted Nonce Payload containing following values:

Figure 30 Nonce Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Nonce Data field is set to random data generated by the transmitting entity.
- The size of the Nonce must between 16 and 256 octets.

Part G

Step 56: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 58: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 61: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 63: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted TSi Payload containing following values:

Figure 31 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 32 Traffic Selector

• A TS Type set to TS_IPV6_ADDR_RANGE (8).

- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to NUT address.
- A Ending Address field is set to greater that or equal to NUT address.

Part H

Step 65: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 67: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 70: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 72: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including properly formatted TSr Payload containing following values:

Figure 33 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 34 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to TN1 address.
- An Ending Address field is set to less than or equal to TN1 address.

Possible Problems:

- The implementation may use different SA lifetimes by the implementation policy. In that case, the tester must change the expiration time to wait CREATE_CHILD_SA request.
- CREATE_CHILD_SA request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
[N(REKEY_SA)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, Ni, [KEi], TSi, TSr
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

Group 2.2. Use of Retransmission Timers

Test IKEv2.EN.I.1.2.2.1: Retransmissions of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device retransmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN1 (End-Node) (End-Node)	FORUM					
	NUT TN1					
(Judgment #1)	(End-Node) (End-Node)					
IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) (Judgment #2) (Packet #2) (Packet #2) (Packet #3) (Packet #3) (Packet #3) (Packet #3) (Judgment #3) (Judgment #3) (Judgment #3) (Judgment #4) (Judgment #4) (Judgment #4) (Vadgment #4) (Vadgment #4) (Vadgment #4) (Vadgment #5) (Vadgment #6) (Vadgment #	(Judgment #1)	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)				
(Judgment #2) (j j	UTH, N+, SAi2, TSi, TSr})				
(Packet #3)	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, A	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})				
(Packet #3)						
(Judgment #3) CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4) * wait for the event of a timeout						
(Judgment #4)		t Echo exchange until lifetime of SA is expired				
(Judgment #4)						
		{N, N+, SA, Ni, TSi, TSr})				
	* wait for the event of a timeout					
N: REKEY_SA		{N, N+, SA, Ni, TSi, TSr})				
	V V					
N+: USE_TRANSPORT_MODE	_					
	N+: USE_TRANSPORT_MODE					

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 waits for the event of a timeout on NUT.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 11: Judgment #5

The NUT retransmits a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

- Each NUT has the different lifetime of SA.
- Each NUT has the different retransmission timers.

Test IKEv2.EN.I.1.2.2.2: Stop of retransmission of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

FORUM				
NUT TN1				
(End-Node) (End-Node)				
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)			
	KE_SA_INIT response (HDR, SAr1, KEr, Nr) Packet #1)			
· '	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2)</pre>			
<	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)</pre>			
	IPoco (Foho Poguest)			
1 '	<pre>IPsec {Echo Request}</pre>			
>	Psec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)			
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)			
	 * wait for the event of a timeout			
1 '	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #5)			
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #4)			
*				
1 '	never send CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #6)			
V V				
N. DEVEV CA				
N: REKEY_SA N+: USE_TRANSPORT_MODE	:			
III. OOL_IIIANOI OKI_WODE	-			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 waits for the event of a timeout on NUT.
- 11. Observe the messages transmitted on Link A

- 12. TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. TN1 waits for the event of a timeout on NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 11: Judgment #5

The NUT retransmits a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Step 14: Judgment #6

The NUT stops the retransmissions of a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

- Each NUT has the different lifetime of SA.
- Each NUT has the different retransmission timers.

Group 2.3. Rekeying CHILD_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.I.1.2.3.1: Close the replaced CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

7 OKOM
NUT TN1
(End-Node) (End-Node)
· · · · · · · · · · · · · · · · · · ·
< IPsec {Echo Request}
· · · · · · · · · · · · · · · · · · ·
N. DEVEV CA
N: REKEY_SA
N+: USE_TRANSPORT_MODE

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #4	
Packet #3	See Common Packet #19	
Packet #4	See Common Packet #14	

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 13. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 14: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.EN.I.1.2.3.2: Use of the new CHILD_SA

Purpose:

To verify an IKEv2 device properly rekeys CHILD_SA

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM		
NUT TN	11		
(End-Node) (End-Node)			
1 '	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)		
<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)		
· '	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2)</pre>		
<	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)		
.''			
	<pre>IPsec {Echo Request}</pre>		
	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)		
	•		
1 '	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)		
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #4)		
	(1 dolot #4)		
1 '	INFORMATIONAL request (HDR, SK {D})		
	(Judgment #5)		
	INFORMATIONAL response (HDR, SK {D}) (Packet #5)		
	IPsec {Echo Request}		
	(Packet #6)		
I .	IPsec {Echo Reply}		
1 '	(Judgment #6)		
V			
N: REKEY_SA			
N+: USE_TRANSPORT_MOD	DE		

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #4	
Packet #3	See Common Packet #19	
Packet #4	See Common Packet #14	
Packet #5	See below	
Packet #6	See Common Packet #19	
	This packet is cryptographically protected by	
	the new CHILD_SA negotiated at Step 10.	

Packet #5: INFORMATIONAL response

racket #.	O. INFORMATIONAL I	esponse
IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0

	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 13. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 14: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.EN.I.1.2.3.3: Lifetime of CHILD_SA expires

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT	TN1
(End-Node)	(End-Node)
 	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
<	ÎKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Judgment #2)
	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)
	IPsec {Echo Request} (Packet #3)
	> IPsec {Echo Reply} (Judgment #3)
	* wait for the event of a timeout of CHILD_SA
ĺ	IPsec {Echo Request} (Packet #4)
	X IPsec {Echo Reply}
	(Judgment #4)
\ \ \ \	V
N: USE_TRANSPO	DRT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #19

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 waits for the event of a timeout on the NUT.
- 9. After timeout of CHILD_SA on the NUT, TN1 transmits an Echo Request with IPsec ESP which has expired to the NUT.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #4

The NUT does not transmit an Echo Reply with IPsec ESP using already expired CHILD_SA.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.EN.I.1.2.3.4: Sending Multiple Transform

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

	CREATE_CHILD_SA exchanges Algorithms		
	Encryption	Integrity	ESN
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FOROM
NUT TN	1
(End-Node) (End-	Node)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Judgment #1)
<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Packet #1)
>	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
	(Judgment #2)
	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
	(Packet #2)
	·
	IPsec {Echo Request}
l i i	(Packet #3)
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired
	(Judgment #3)
·:·	
	CDEATE CHILD CA required (UDD CV (N N) CA N; TC; TC;)
>	<pre>CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)</pre>
	(Judyllicht #4)
V	
,	
N: REKEY_SA	
N+: USE_TRANSPORT_MOD	E

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired for 30 seconds.
- 9. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (ADVANCED)

- 10. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 15. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 16. Observe the messages transmitted on Link A.
- 17. Repeat Steps 15 and 16 until lifetime of SA is expired for 30 seconds.
- 18. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (ADVANCED)

- 19. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. TN1 responds with an IKE_SA_INIT response to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 24. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 24 and 25 until lifetime of SA is expired for 30 seconds.
- 27. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Part B

Step 11: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 13: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 18: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Part C

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 25: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 27: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Possible Problems:

Test IKEv2.EN.I.1.2.3.5: Sending Multiple Proposal

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple proposals to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the following configuration:

	CREATE_CHILD_SA exchanges Algorithms				
	Proposal	Proposal Protocol Encryption Integrity ESN		ESN	
Part A	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
rart A	Proposal #2	ESP	ENCR_AES_CBC	AUTH_AES_XCBC_96	ESN

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired for 30 seconds.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" in SA Proposal #1 (ESP) and then "ENCR_AES_CBC", "AUTH_AES_XCBC_96" and "Extended Sequence Numbers" in SA Proposal #2 (ESP) as accepted algorithms.

Possible Problems:

Test IKEv2.EN.I.1.2.3.6: Rekeying Failure

Purpose:

To verify an IKEv2 device properly handles rekeying failure.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	11
(End-Node) (End-	Node)
į į	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)</pre>
	IPsec {Echo Request} (Packet #3) IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)
	•
	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #4) CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}) (Packet #4)
	INFORMATIONAL request (HDR, SK { }) (Packet #5) no INFORMATIONAL response (HDR, SK { }) (Judgment #5)
V V	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14
Packet #5	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying IKE_SA from the NUT, TN1 rejects the NUT's proposal. TN1 responds with a CREATE_CHILD_SA response with a Notify of type NO_PROPOSAL_CHOSEN.
- 11. TN1 trasnmits an INFORMATIONAL request for liveness check to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request for rekeying IKE_SA. The request includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #5

The NUT never responds with an INFORMATIONAL response to an INFORMATIONAL request.

Possible Problems:

Test IKEv2.EN.I.1.2.3.7: Perfect Forward Secrecy

Purpose:

To verify an IKEv2 device properly rekeys CHILD_SA when Perfect Forward Secrecy enables.

References:

• [RFC 4306] - Sections 2.12

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds. Enable PFS.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM
NUT TN1	
(End-Node) (End-Node	
·	_SA_INIT request (HDR, SAi1, KEi, Ni)
< IKE	dgment #1) _SA_INIT response (HDR, SAr1, KEr, Nr) cket #1)
·	_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) dgment #2)
< IKE	_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) cket #2)
< IPsi (Pai	ec {Echo Request} cket #3)
> IPs	
1	ATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi, TSi, TSr}) dgment #4)
< CRE/	agment #4) ATE_CHILD_SA response (HDR, SK {N+, SA, Nr, KEr, TSi, TSr}) cket #4)
·	ORMATIONAL request (HDR, SK {D})
	dgment #5) ORMATIONAL response (HDR, SK {D})
	cket #5)
IPs	· · · · ·
(Pai	cket #6)
	dgment #6)
V	
N: REKEY_SA	
N+: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See below
Packet #6	See Common Packet #19
	This packet is cryptographically protected by
	the new CHILD_SA negotiated at Step 10.

Packet #4: CREATE_CHILD_SA response

IPv6 Header	Same as the Common Packet #14	
UDP Header	Same as the Common	Packet #14
IKEv2 Header	Same as the Common	Packet #14
E Payload	Same as the Common	Packet #14
N Payload	Same as the Common	Packet #14
N Payload	Same as the Common	Packet #14
SA Payload	Same as the Common	Packet #14
Nr Payload	Next Payload	34 (KE)
KEr Payload	Next Payload	44 (TSi)
	Critical	0

	1 0110111	
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
TSi Payload	Same as the Common	Packet #14
TSr Payload	Same as the Common	Packet #14

Packet #5: INFORMATIONAL response

IPv6 Header		Same as the Common Packet #18
UDP Header		Same as the Common Packet #18
IKEv2 Header		Same as the Common Packet #18
E Payload	Other fields a	are same as the Common Packet #18
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 13. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

 $"AUTH_HMAC_SHA1_96" \ and \ "No \ Extended \ Sequence \ Numbers" \ as \ proposed \ algorithms.$

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 14: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

Test IKEv2.EN.I.1.2.3.8: Use of the old CHILD_SA

Purpose:

To verify an IKEv2 device properly handles new CHILD_SA and old CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN1 (End-Node) (End-N	
(Ena-Node) (Ena-N	loue)
	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)</pre>
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)
.''.	(133.01.72)
1 '	<pre>IPsec {Echo Request}</pre>
	Psec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)
<	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #4)
1	<pre>IPsec {Echo Request} (old CHILD_SA) (Packet #5)</pre>
	IPsec {Echo Reply} (old CHILD_SA or new CHILD_SA)
	(Judgment #5)
, v	,
N: REKEY_SA	
N+: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14
Packet #5	See Common Packet #19
	This packet is cryptographically protected by
	the new CHILD_SA negotiated at Step 5.

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms again.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 12: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP. The NUT can use both the first CHILD_SA and the new CHILD_SA.

Possible Problems:

Group 2.4. Rekeying IKE_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.I.1.2.4.1: Close the replaced IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE, SA Lifetime to 60 seconds and set CHILD, SA Lifetime

In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

FORUM				
NUT TN1				
(End-Node) (End-Node)				
IKE_SA_INIT request (HDR, SAi1, KEi, Ni)				
(Judgment #1)				
< IKE_SA_INIT response (HDR, SAr1, KEr, Nr)				
(Packet #1)				
> IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})				
(Judgment #2)				
< IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})				
(Packet #2)				
(Packet #3)				
(Judgment #3)				
> CREATE_CHILD_SA request (HDR, SK {SA, Ni, KEi})				
(Judgment #4)				
< CREATE_CHILD_SA response (HDR, SK {SA, Nr, KEr})				
(Packet #4)				
I INTORNATIONAL A (UDD 200 CD)				
INFORMATIONAL request (HDR, SK {D})				
(Judgment #5)				
(racket #5)				
(Packet #6)				
IPsec {Echo Reply}				
(Judgment #6)				
V V				
N: USE_TRANSPORT_MODE				

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #12
Packet #5	See Common Packet #18
Packet #6	See Common Packet #19

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds

with a CREATE_CHILD_SA response to the NUT.

- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response to close the replaced IKE_SA.
- 13. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE_SA.

Step 14: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.4.2: Use of the new IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

A NUT TALE
NUT TN1
(End-Node) (End-Node)
IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
(Judgment #1)
IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
(Packet #1)
IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
(Judgment #2)
IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
Packet #2)
IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired
(Judgment #3)
CREATE_CHILD_SA request (HDR, SK {SA, Ni})
(Judgment #4)
< CREATE_CHILD_SA response (HDR, SK {SA, Nr})
(Packet #4)
INFORMATIONAL request (HDR, SK {D})
(Judgment #5)
(rdoket #3)
INFORMATIONAL request (HDR, SK {})
(Packet #6)
INFORMATIONAL response (HDR, SK {})
(Judgment #6)
V
N: USE_TRANSPORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #12
Packet #5	See Common Packet #18
Packet #6	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds

with a CREATE_CHILD_SA response to the NUT.

- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close the replaced IKE_SA.
- 13. TN1 transmits an INFORMATIONAL request with no payloads cryptographically protected by new IKE_SA.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE SA.

Step 14: Judgment #6

The NUT resopndes with an INFORMATIONAL response with not payloads cryptographically protected by new IKE_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.4.3: Lifetime of IKE_SA expires

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

AULT TAI	
NUT TN	
(End-Node) (End-	Node)
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l 1 1	(Judgment #1)
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
1	(Packet #1)
l i i	(rusher mr)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Judgment #2)
	` • •
	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
! !	(Packet #2)
! !	
	<pre>INFORMATIONAL request (HDR, SK {})</pre>
	(Packet #3)
>	<pre>INFORMATIONAL response (HDR, SK {})</pre>
	(Judgment #3)
l i i	
j *	wait for the event of a timeout of IKE_SA
li i	_
	INFORMATIONAL request (HDR, SK {})
	(Packet #4)
	INFORMATIONAL response (HDR, SK {})
	(Judgment #4)
	(Juayinetti #4)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #17
Packet #4	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 waits for the event of a timeout on the NUT.
- 9. After timeout of CHILD_SA on the NUT, TN1 transmits an INFORMATIONAL request with no payloads using already expired IKE_SA.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT responds with an INFORMATIONAL response with no payloads.

Step 10: Judgment #4

The NUT does not respond with an INFORMATIONAL response with no payloads using already expired IKE SA.

Possible Problems:

Test IKEv2.EN.I.1.2.4.4: Sending Multiple Transform

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple transforms to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

	CREATE_CHILD_SA exchanges Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

FORUM
NUT TN1
(End-Node) (End-Node)
< IPsec {Echo Request}
(Packet #3)
···
N: USE_TRANSPORT_MODE

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (ADVANCED)

- 10. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 15. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 16. Observe the messages transmitted on Link A.
- 17. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 18. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (ADVANCED)

- 19. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. TN1 responds with an IKE_SA_INIT response to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 24. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 27. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (ADVANCED)

- 28. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 29. Observe the messages transmitted on Link A.
- 30. TN1 responds with an IKE_SA_INIT response to the NUT.
- 31. Observe the messages transmitted on Link A.
- 32. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 33. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 34. Observe the messages transmitted on Link A.
- 35. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 36. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part B

Step 11: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 13: Judgment #2

The NUT transmits an IKE AUTH request including "ENCR 3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 18: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part C

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 25: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 27: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part D

Step 29: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 31: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 34: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 36: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including

"ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as proposed algorithms. Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Possible Problems:

242

Test IKEv2.EN.I.1.2.4.5: Sending Multiple Proposal

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple proposal to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

		CREATE_CHILD_SA exchanges Algorithms				
	Proposal	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_ 3DES	PRF_ HMAC_SHA1	AUTH_ HMAC_SHA1_96	Group 2
	Proposal #2	IKE	ENCR_ AES_CBC	PRF_ AES128_CBC	AUTH_ AES_XCBC_96	Group 14 or Group 24

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FOROW
NUT TN1	
(End-Node) (End-Node)	
(Judgme	_INIT response (HDR, SAr1, KEr, Nr)
Judgme	TH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
(Packet	
	, , ,
IPsec { 	<pre>(Echo Reply)</pre>
	_CHILD_SA request (HDR, SK {SA, Ni}) ent #4)
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request with 2 SA Proposals. SA Proposal #1 (ESP) includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2". SA Proposal #2 (ESP) includes "ENCR_AES_CBC", "PRF_AES128_CBC", "AUTH_AES_XCBC_96" and "D-H Group 14". Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Possible Problems:

Test IKEv2.EN.I.1.2.4.6: Use of the old IKE_SA

Purpose:

To verify an IKEv2 device properly handles new CHILD_SA and old CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN (End-Node) (End-		
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)	
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)	
	•	
i i	IPsec {Echo Request} (Packet #3)	
	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)	
:: ::		
	CREATE_CHILD_SA request (HDR, SK SA, Ni}) (Judgment #4)	
	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Packet #4)	
	 INFORMATIONAL request (HDR, SK {}) (old IKE_SA) (Packet #5)	
>	INFORMATIONAL response (HDR, SK {}) (old IKE_SA) (Judgment #5)	
V		
N: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #12
Packet #5	See Common Packet #17
	(Use old IKE_SA)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is encrypted by the old IKE_SA.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #5

The NUT transmits an INFORMATIONAL response with no payload to the TN1. THe message is encrypted by the old IKE_SA.

Possible Problems:

Test IKEv2.EN.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds

Configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA Rekeying Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_3DES	PRF_AES128_XCBC	AUTH_HMAC_SHA1_96	Group 2

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM		
NUT TN	1		
(End-Node) (End-	Node)		
>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)		
	(Judgment #1)		
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)		
	(Packet #1)		
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})		
	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})		
	(Packet #2)		
	(1.40101 112)		
.''.			
<	IPsec {Echo Request}		
	(Packet #3)		
	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired		
	(Judgment #3)		
	•		
	CREATE_CHILD_SA request (HDR, SK {SA, Ni})		
	(Judgment #4)		
	CREATE_CHILD_SA response (HDR, SK {SA, Nr})		
l i i	(Packet #4)		
i i			
>	INFORMATIONAL request (HDR, SK {D})		
	(Judgment #5)		
1	INFORMATIONAL response (HDR, SK {})		
! !	(Packet #5)		
	INFORMATIONAL request (UDP CV ())		
I .	INFORMATIONAL request (HDR, SK {})		
	(Packet #6) INFORMATIONAL response (HDR, SK {})		
I .	(Judgment #6)		
V	· · · · · · · · · · · · · · · · · · ·		
N: USE_TRANSPORT_MODE			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See Common Packet #18
Packet #6	See Common Packet #17

Packet #4: CREATE_CHILD_SA response
Packet #4 is same as Common Packet #12 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform TypePRF replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	4 (PRF_AES128_XCBC)

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close the replaced IKE_SA.
- 13. TN1 transmits an INFORMATIONAL request with no payloads cryptographically protected by new IKE SA.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_AES128_XCBC", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE_SA.

Step 14: Judgment #6

The NUT resopndes with an INFORMATIONAL response with not payloads cryptographically protected by new IKE_SA.

Possible Problems:

Group 2.5. Creating New CHILD_SAs with the CREATE_CHILD_SA Exchanges

Test IKEv2.EN.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to generate new CHILD_SAs.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3
- [RFC 4718] Sections 4.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
Packet #2	See Common Packet #4

Packet #2: IKE_AUTH response

IPv6 Header	Same as the	Common Packet #4
UDP Header	Same as the	Common Packet #4
IKEv2 Header	Same as the	Common Packet #4
E Payload	Same as the	Common Packet #4
IDi Payload	Same as the	Common Packet #4
AUTH Payload	Same as the	Common Packet #4
N Payload	Same as the	Common Packet #4
SA Payload	Same as the	Common Packet #4
TSi Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Packet #4	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. NUT starts to negotiate new CHILD_SA with TN1 by sending CREATE_CHILD_SA request.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.EN.I.1.2.5.2: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to generate new CHILD_SAs.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3
- [RFC 4718] Sections 4.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

FORUM				
NUT TN1				
(End-Node) (End-Node)				
i i	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr)			
	(Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})			
	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2)			
1 '	IPsec {TCP-SYN} (Packet #3)			
1	IPsec {TCP-RST} (Judgment #3)			
1 '	<pre>IPsec {Echo Request} (Packet #4)</pre>			
1 '	IPsec {Echo Reply} (Judgment #4)			
į į	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {N, SA, Nr, TSi, TSr})			
1 '	(Packet #5)			
l i i	IPsec {TCP-SYN} (Packet #6)			
	IPsec {TCP-RST} (Judgment #6)			
	<pre>IPsec {Echo Request} (Packet #7)</pre>			
	<pre>IPsec {Echo Reply} (Judgment #7)</pre>			
V V				
N: USE_TRANSPORT_MODE	N: USE_TRANSPORT_MODE			

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #19
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #19

• Packet #2: IKE_AUTH response

IPv6 Header	Same as the Common Packet #4
UDP Header	Same as the Common Packet #4
IKEv2 Header	Same as the Common Packet #4
E Payload	Same as the Common Packet #4
IDi Payload	Same as the Common Packet #4
AUTH Payload	Same as the Common Packet #4
N Payload	Same as the Common Packet #4
SA Payload	Same as the Common Packet #4

TSi Payload	Other fields are same as the Common Packet #4		
	Traffic Selectors See below		
TSr Payload	Other fields are same as the Common Packet #4		
	Traffic Selectors See below		

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

• Packet #3: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X	
	Destination Address	NUT's Global Address on Link A	
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message	
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.	
	Payload Data	Subsequent data encrypted by underlying encryption algorithm	
	Padding	Any value which to be a multiple of the encryption block size	
	Pad Length	The length of the Padding field	
	Next Header	6 (TCP)	
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.	
TCP Header	Source Port	30000	
	Destination Port	30000	
	Flags	SYN (0x02)	

• Packet #5: CREATE_CHILD_SA response

IPv6 Header	Same as the	Common Packet #8
UDP Header	Same as the	Common Packet #8
IKEv2 Header	Same as the	Common Packet #8
E Payload	Same as the	Common Packet #8
IDi Payload	Same as the	Common Packet #8
AUTH Payload	Same as the	Common Packet #8
N Payload	Same as the	Common Packet #8
SA Payload	Same as the	Common Packet #8
TSi Payload	Other fields are same as the	Common Packet #8
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #8
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link X
		Ending Address	NUT's Global Address on Link X

TSr Payload Traffic Selector TS Type	8 (IPV6_ADDR_RANGE)
--	---------------------

1 0110111			
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
	End Port	65535	
	Starting Address	TN1's Global Address on Link A	
		Ending Address	TN1's Global Address on Link A

• Packet #6: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
TCP Header	Source Port	30000
	Destination Port	30000
	Flags	SYN (0x02)

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port 30000 on NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 9. Observe the messages transmitted on Link A.
- 10. NUT starts to negotiate new CHILD_SA with TN1 by sending CREATE_CHILD_SA request.
- 11. Observe the messages transmitted on Link A.
- 12. After a reception of CREATE_CHILD_SA request from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port 30000 on NUT.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT never transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #6

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 16: Judgment #7

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• If the NUT uses TCP port 30000 for other applications, the TN1 transmits TCP-SYN packets to other closed TCP port on the NUT.

Group 2.6. Exchange Collisions

Test IKEv2.EN.I.1.2.6.1: Simultaneous CHILD_SA Close

Test IKEv2.EN.I.1.2.6.2: Simultaneous IKE_SA Close

Test IKEv2.EN.I.1.2.6.3: Simultaneous CHILD_SA Rekeying

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM	
NUT TN	11	
(End-Node) (End-	Node)	
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)	
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)	
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2)</pre>	
	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)</pre>	
.''		
	<pre>IPsec {Echo Request} (Packet #3)</pre>	
>	IPsec {Echo Reply}	
	 -	
	<pre>CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4)</pre>	
I	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Packet #4)	
>	CREATE_CHILD_SA response (HDR, SK {N+, SA, Ni, TSi, TSr}) (Judgment #5)	
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #5)	
	INFORMATIONAL request (HDR, SK {D}) (Judgment #6)	
<	(Gadgillott #6) INFORMATIONAL response (HDR, SK {D}) (Packet #6)	
	<pre>INFORMATIONAL request (HDR, SK {D}) (Judgment #7)</pre>	
	INFORMATIONAL response (HDR, SK {D}) (Packet #7)	
	<pre>IPsec {Echo Request} (new CHILD_SA) (Packet #8)</pre>	
 	<pre>IPsec {Echo Reply}</pre>	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
N: REKEY_SA		
N+: USE_TRANSPORT_MOD	<u>-</u>	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #13
Packet #5	See Common Packet #14
Packet #6	See below
Packet #7	See below
Packet #8	See Common Packet #19

Packet #6: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Packet #7: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size

	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
		NUT's inbound CHILD_SA SPI value of the new CHILD_SA initiated by
	Security Parameter Index	the NUT at Step 9

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey CHILD_SA to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with a CREATE_CHILD_SA response to the CRETE_CHILD_SA received at Step 9. The response message includes minimum Nonce Data.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response to the INFORMATIONAL request received at Step 13.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an INFORMATIONAL response to the INFORMATIONAL request received at Step 15.
- 17. TN1 transmits an Echo Request with IPsec ESP using the existing algorithms to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence

Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the original CHILD_SA.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the new CHILD_SA initiated by the NUT at Step 9.

Step 18: Judgment #8

The NUT transmits an Echo Reply with IPsec ESP using the existing CHILD_SA initiated by the TN1 at Step 10.

Possible Problems:

Each NUT has the different lifetime of SA.

Test IKEv2.EN.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM		
NUT TN			
(End-Node) (End-	Node)		
· ·	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)		
<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)		
	 IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2)		
	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)		
	IPsec {Echo Request}		
>	(Packet #3)		
1	 		
	 CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})		
	(Judgment #4)		
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Packet #4)		
>	CREATE_CHILD_SA response (HDR, SK {N+, SA, Ni, TSi, TSr}) (Judgment #5)		
	 INFORMATIONAL request (HDR, SK {D}) (Packet #5)		
>	INFORMATIONAL response (HDR, SK {D}) (Judgment #6)		
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #7)		
	CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)} (Packet #6)		
	 IPsec {Echo Request} (Packet #7)		
>	(Packet #7) IPsec {Echo Reply} (Judgment #8)		
V \	· · · · · · · · · · · · · · · · · · ·		
N. DEVEV CA			
N: REKEY_SA N+: USE_TRANSPORT_MOD			
NI. UOL_INANOFUNI_MUL	, L		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #13
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #19

Packet #5: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500

		1 OKOW
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Packet #6: CREATE_CHILD_SA response

IPv6 Header		Same as Common Packet #14
UDP Header		Same as Common Packet #14
IKEv2 Header		Same as Common Packet #14
E Payload		Same as Common Packet #14
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	NO_PROPOSAL_CHOSEN (14)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey CHILD_SA to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an INFORMAITONAL request with a Delete Payload to close the replaced

CHILD_SA.

- 13. Observe the messages transmitted on Link A.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type NO_PROPOSAL_CHOSEN to the retransmitted CREATE_CHILD_SA request.
- 16. TN1 transmits an Echo Request with IPsec ESP using the existing algorithms to the NUT.
- 17. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL response with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the original CHILD_SA.

Step 14: Judgment #7

The NUT retransmits the same CREATE_CHILD_SA request as the message at Step 11. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 17: Judgment #8

The NUT transmits an Echo Reply with IPsec ESP using the existing CHILD_SA initiated by the TN1 at Step 10.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.EN.I.1.2.6.5: Simultaneous IKE_SA Rekeying

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4718] - Sections 5.11.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	 IKE SA INIT request (UDD SAid KE; Ni)	
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)	
•	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
	(Packet #1)	
 >	l IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})	
	(Judgment #2)	
< 	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Packet #2) 	
	· ·	
•	IPsec {Echo Request}	
	(Packet #3)	
>	IPsec {Echo Reply}	
i	(oddgmont no)	
	•	
	 CREATE_CHILD_SA request (HDR, SK {SA, Ni})	
•	(Judgment #4)	
:	 CREATE_CHILD_SA request (HDR, SK {SA, Ni})	
•	(Packet #4)	
•	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #5)	
	I CREATE_CHILD_SA response (HDR, SK {SA, Nr})	
•	(Packet #5)	
 >	 INFORMATIONAL request (HDR, SK {D})	
İ	(Judgment #6)	
	INFORMATIONAL response (HDR, SK {}) (Packet #6)	
	(lacker #0) 	
>	INFORMATIONAL request (HDR, SK {D})	
	(Judgment #7)	
<	INFORMATIONAL response (HDR, SK {}) (Packet #7)	
	(1 donot 111)	
· 	INFORMATIONAL request (HDR, SK {})	
ļ	(Packet #8)	
>	INFORMATIONAL response (HDR, SK {}) (Judgment #8)	
I V	(Judgment #6)	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #11
Packet #5	See Common Packet #12
Packet #6	See Common Packet #18
Packet #7	See Common Packet #18
Packet #8	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with a CREATE_CHILD_SA response to the CREATE_CHILD_SA request received at Step 9. The response message includes minimum Nonce Data to make the NUT send a message to close duplicated IKE_SA.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response with no payload.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an INFORMATIONAL response with no payload.
- 17. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is cryptographically protected by the new IKE_SA initiated by TN1 at Step 10.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT responds a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the proposal in the SA payload Response has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's responder's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request . The message's IKE_SA Initiator's SPI value is the IKE_SA Initiator's SPI value of the original IKE_SA, and the message's IKE_SA Responder's SPI value is the IKE_SA Responder's SPI value of the original IKE_SA. The message also has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL request . The message's IKE_SA Initiator's SPI value is the IKE_SA Initiator's SPI value of the new IKE_SA initiated by the NUT at Step 9, and the message's IKE_SA Responder's SPI value is the IKE_SA Responder's SPI value of the new IKE_SA initiated by the NUT at Step 9. The message also has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Step 18: Judgment #8

The NUT transmits an INFOMATIONAL response with no payload.

Possible Problems:

• Each NUT has the different lifetime of SA

• Step 13 (INFORMATIONAL request to delete the original IKE_SA) can possibly switch the place with Step 15 (INFORMATIONAL request to delete the new IKE_SA).

Test IKEv2.EN.I.1.2.6.6: Simultaneous IKE_SA Rekeying with retransmission

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4718] - Sections 5.11.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

FORUM		
NUT TN1		
(End-Node) (End-Nod	e)	
IK	E_SA_INIT request (HDR, SAi1, KEi, Ni)	
(1	udgment #1)	
< IK	E_SA_INIT response (HDR, SAr1, KEr, Nr)	
(P	acket #1)	
· · · · · · · · · · · · · · · · · · ·	E_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})	
	udgment #2)	
	E_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})	
(P	acket #2)	
IP	sec /Fcho Reguest	
· · · · · · · · · · · · · · · · · · ·	acket #3)	
IP	,	
· · · · · · · · · · · · · · · · · · ·	udgment #3)	
> CR	-> CREATE_CHILD_SA request (HDR, SK {SA, Ni})	
(1	udgment #4)	
1 '	EATE_CHILD_SA request (HDR, SK {SA, Ni})	
' '	(Packet #4)	
	CREATE_CHILD_SA response (HDR, SK {SA, Nr})	
	udgment #4)	
	FORMATIONAL request (HDR, SK {D})	
· · · · · · · · · · · · · · · · · · ·	acket #5)	
	INFORMATIONAL response (HDR, SK {})	
	(Judgment #5)	
	·	
	CREATE_CHILD_SA request (HDR, SK {SA, Ni})	
I .	(Judgment #6)	
V		
N: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #11
Packet #5	See below

Packet #5: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0

		1 OKOM
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index	none

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits an INFORMATONAL request to close the original IKE_SA. The message has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value
- 13. Observe the messages transmitted on Link A.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT responds a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the proposal in the SA payload Response has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's responder's SPI value in the SPI field.

Step 13: Judgment #6

The NUT responds with an INFOMATIONAL response to the INFORMATIONAL request to close the original IKE_SA.

Step 14: Judgment #7

The NUT never retransmits a CREATE_CHILD_SA request transmitted at Step 9.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.EN.I.1.2.6.7: Rekeying a CHILD_SA while Closing a CHILD_SA

Test IKEv2.EN.I.1.2.6.8: Closing a New CHILD_SA

Test IKEv2.EN.I.1.2.6.9: Rekeying a New CHILD_SA

Test IKEv2.EN.I.1.2.6.10: Rekeying an IKE_SA with half-open CHILD_SAs

Test IKEv2.EN.I.1.2.6.11: Rekeying a CHILD_SA while rekeying an IKE_SA

Test IKEv2.EN.I.1.2.6.12: Rekeying an IKE_SA with half-closed CHILD_SAs

Test IKEv2.EN.I.1.2.6.13: Closing a CHILD_SA while rekeying an IKE_SA

Test IKEv2.EN.I.1.2.6.14: Closing an IKE_SA while rekeying an IKE_SA

Test IKEv2.EN.I.1.2.6.15: Rekeying an IKE _SA while Closing an IKE_SA

Group 2.7. Non zero RESERVED fields

Test IKEv2.EN.I.1.2.7.1: Non zero RESERVED fields in CREATE_CHILD_SA response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM
NUT TN1	
(End-Node) (End-No	ode)
(IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
(IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Packet #2)
	IPsec {Echo Request} (Packet #3)
> i	Psec {Echo Reply} repeat Echo exchange until lifetime of SA is expired
(((((((((CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Judgment #4) CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Packet #4)
i i	INFORMATIONAL request (HDR, SK {D})
((Judgment #5)
V	
N: REKEY_SA N+: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #4
Packet #3	See Common Packet #19
Packet #4	See Common Packet #14
	All RESERVED fields are set to one.

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT. All RESERVED fields in the message are set to one.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Possible Problems:

• Each NUT has the different lifetime of SA.

Group 3. The INFORMATIONAL Exchange

Group 3.1. Header and Payload Formats

Test IKEv2.EN.I.1.3.1.1: Sending INFORMATIONAL Exchange

Group 3.2. Use of Retransmission Timers

Test IKEv2.EN.I.1.3.2.1: Retransmission of INFORMATIONAL request

Test IKEv2.EN.I.1.3.2.2: Stop of retransmission of INFORMATIONAL request

Group 3.3. Non zero RESERVED fields

Test IKEv2.EN.I.1.3.3.1: Non zero RESERVED fields in INFORMATIONAL response

Group 3.4. Error Handling

Test IKEv2.EN.I.1.3.4.1: INVALID_SPI

Section 1.1.2. Endpoint to Security Gateway Tunnel

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.EN.I.2.1.1.1: Sending IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: IKE Header Format (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE SA INIT response to the NUT.

8. Observe the messages transmitted on Link A.

Part C: IDi Payload Format (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (ADVANCED)

- 13. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: SA Payload Format (ADVANCED)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: TSi Payload Format (ADVANCED)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSr Payload Format (ADVANCED)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted IKE Header containing following values:

1 OKOM
1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
! IKE_SA Initiator's SPI !
!
+-
! IKE_SA Responder's SPI !
!
+-
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
+-
! Message ID !
+-
! Length !
+-

Figure 35 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_AUTH (35).
- A Flags field is set to (00010000)2 = (16)10.
- A Message ID field is set to 1.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Encrypted Payload containing following values:

Figure 36 Encrypted payload

- A Next Payload field is set to IDi Payload (35).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted ID Payload containing following values:

Figure 37 ID Payload format

- A Next Payload field is set to AUTH Payload (39).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field is set to ID_IPV6_ADDR (5).
- A RESERVED field is set to zero.
- An Identification Data field is set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted AUTH Payload containing following values:

Figure 38 AUTH Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field is set to Shared Key Message Integrity Code (2).
- A RESERVED field is set to zero.
- An Authentication Data field is set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 20: Judgment #2

					FUKUM				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -		
	! Next	44	!0!	0	! Length	40	!		
	+-+-+-+	+-+	-+-+-+-		+-+-+-+-+-+-+		-+-+-+-+ -		
	! 0	•	!	0	! Length	36	!	!	!
					+-+-+-+-+-+-+-+			1	
	! Number	1	! PIOL	טו טו	! SPI Size 4	! ITans	CHL 3!	1	1
	! SPI val	 IIE					 	 	
	+-+-+-+	+-+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		i
1	! 3	3	!	0	! Length	8	!	i	i
Transform	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+	İ	SA Payloa
1	! Type 1	(EN)	!	0	! Transform ID	3	(3DES) !	Proposal	
	+-+-+-+	+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		
_ !	! 3		!	0	! Length	8	!	!	!
Transform					+-+-+-+-+-+-+-+-+		-+-+-+-+		!
ı	! Type 3	3 (IN)			! Transform ID +-+-+-+		(SHA1) !		1
1	! ()	 	0	! Length	8	 	 	
Transform	•		-+-+-+-		: Longtn +-+-+-+-+-+	-	· -+-+-+-+		
	! Type 5				! Transform ID	0	(No) !	i	i
	+-+-+-+	+-+-+	, -+-+-+-	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -	· ·	

Figure 39 SA Payload contents

The NUT transmits an IKE_AUTH request including properly formatted SA Payload containing following values (refer following figures):

Figure 40 SA Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 41 Proposal sub-structure format

Transform field is set to following (There are 3 Transform Structures).

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

Figure 42 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR 3DES (3).

Transform #2

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last proposal, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSi Payload containing following values:

Figure 43 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
! TS Type !IP Protocol ID* Selector Length
+-
Start Port* End Port*
+-
!
~ Starting Address* ~
!
+-
!
~ Ending Address* ~
!
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Figure 44 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to NUT address.
- A Ending Address field is set to greater that or equal to NUT address.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSr Payload containing following values:

Figure 45 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to the number of actual traffic selectors.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 46 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to less than or equal to Prefix Y.
- An Ending Address field is set to less than or equal to Prefix Y.

Possible Problems:

• IKE_AUTH request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDi,
[CERT+],
[N(INITIAL_CONTACT)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[IDr],
AUTH,
[CP(CFG_REQUEST)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

• Each of transforms can be located in the any order.

Test IKEv2.EN.I.2.1.1.2: Use of CHILD SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

NU.T	TNIA	Tild
NUT	TN1	TH1
(End-Node)	(SGW)	(Host)
	1	
j	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i	(Judgment #1)
	i	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i	i	(Packet #1)
l i	i	
l ¦	> >	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	1	(Judgment #2)
	!	, ,
<		IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	!	(Packet #2)
	l	
<======	=====+	IPsec {Echo Request}
		(Packet #3)
	=====+	> IPsec {Echo Reply}
		(Judgment #3)
	1	
V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #20

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH1 transmits an Echo Request and TN1 forwards an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

• None.

Group 1.2. Requesting an Internal Address on a Remote Network

Test IKEv2.EN.I.2.1.2.1: Sending CFG_REQUEST

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Configuration Payload format

References:

• [RFC 4306] - Sections 3.15

Test Setup:

• Network Topology
Connect the devices according to the following topology.

Configuration
 In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for

INTERNAL_IP6_ADDRESS. The traffic selector must be configured by the following table.

		Traffic Selector						
	Source			Destination				
	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range		
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY		
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY		

^{*} NUT must propose Traffic Selector covering above address range.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response to the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Configuration Payload containing following values:

		110111	
	1	2	3
0 1 2 3 4 5 6	7 8 9 0 1 2 3 4 5	5 6 7 8 9 0 1 2 3 4 5 6	7 8 9 0 1
+-+-+-+-+-+	-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+	-+-+-+-+
! Next Payload	!C! RESERVED	! Payload Lengt	h !
+-+-+-+-+-+-+	-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+	-+-+-+-+
! CFG Type	!	RESERVED	!
+-+-+-+-+-+-+	-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+	-+-+-+-+
!			!
~	Configuration	on Attributes	~
!	-		!
+-+-+-+-+-+-+	+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	-+-+-+-+

Figure 47 Configuration Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A CFG Type field is set to CFG_REQUEST (1).
- A RESERVED field is set to zero.

The following configuration attribute must be included in Configuration Attributes field.

Figure 48 Configuration Attributes format

Configuration Attribute #1

- Reserved field is set to zero.
- Attribute Type field is set to INTERNAL_IP6_ADDRESS (8).
- Length field is set to zero.
- Value field is empty.

Possible Problems:

• The implementation may not set single configuration attribute by the implementation policy. In this case, Configuration Payload contains multiple configuration attributes.

Test IKEv2.EN.I.2.1.2.2: Receipt of CFG_REPLY

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 2.19 and 3.15

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for INTERNAL_IP6_ADDRESS. The traffic selector must be configured by the following table.

Traffic Selector				
Source	Destination			

	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY

^{*} NUT must propose Traffic Selector covering above address range.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	TH1
(End-Node)	(SGW)	(Host)
	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	1	(Judgment #1)
<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	1	(Packet #1)
	1	
	>	IKE_AUTH request (HDR, SK {IDi, AUTH,
		CP(CFG_REQUEST), SAi2, TSi, TSr})
		(Judgment #2)
<		IKE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
		(Packet #2)
<=====	======+	IPsec {Echo Request (sent to NUT internal address)}
		(Packet #3)
======	======+	> IPsec {Echo Reply (sent from NUT internal address)}
		(Judgment #3)
V	V	V

Packet #1	See Common Packet #2
Packet #2	See Below
Packet #3	See Below

• Packet #2: IKE_AUTH response packet

IPv6 Header	Same as Common Packet #6		
UDP Header	Same as Common Packet #6		
IKEv2 Header	Same as C	ommon Packet #6	
E Payload	Same as C	ommon Packet #6	
IDr Payload	Same as C	ommon Packet #6	
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as C	ommon Packet #6	
CP Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length	29	
	CFG Type	2 (CFG_REPLY)	
	RESERVED	0	
	Configuration Attributes	See below	
SA Payload	Same as Common Packet #6		
TSi Payload	Other fields are same as Common Packet #6		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #6		

Configuration Attributes	Reserved	0
--------------------------	----------	---

	Attribute Type	INTERNAL_IP6_ADDRESS	
	Length	17	
	Value	IPv6 address Prefix Y::1	
		Prefix-length	128

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	Prefix Y::1
	Ending Address	Prefix Y::1

Packet #3: Echo Request packet

IPv6 Header	Same as Common Packet #20		
ESP	Same as Common Packet #20		
IPv6 Header	Source Address	Prefyx Y::f	
	Destination Address	Prefix Y::1	
ICMPv6 Header	Same as Common Packet #20		

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH1 transmits an Echo Request to NUT internal address and TN1 forwards an Echo Request with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96. The inner packet is sent from NUT internal address.

Possible Problems:

• The implementation may not set single configuration attribute by the implementation policy. In this case, Configuration Payload contains multiple configuration attributes.

Test IKEv2.EN.I.2.1.2.3: Non zero RESERVED fields in Configuration Payload

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for INTERNAL_IP6_ADDRESS. The traffic selector must be configured by the following table.

Traffic Selector		
Source	Destination	

	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY

^{*} NUT must propose Traffic Selector covering above address range.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	TH1
(End-Node)	(SGW)	(Host)
	1	
	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Judgment #1)
<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	1	(Packet #1)
	1	
	>	IKE_AUTH request (HDR, SK {IDi, AUTH,
	I	CP(CFG_REQUEST), SAi2, TSi, TSr})
		(Judgment #2)
<		IKE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
	l	(Packet #2)
	l	
<======	=====+	IPsec {Echo Request (sent to NUT internal address)}
		(Packet #3)
======	=====+	> IPsec {Echo Reply (sent from NUT internal address)}
	I	(Judgment #3)
	I	
V	V	V

Packet #1	See Common Packet #2
Packet #2	See Below
Packet #3	See Below

• Packet #2: IKE_AUTH response packet

IPv6 Header	Same as Common Packet #6		
UDP Header	Same as Common Packet #6		
IKEv2 Header	Same as C	ommon Packet #6	
E Payload	Same as C	ommon Packet #6	
IDr Payload	Same as C	ommon Packet #6	
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as C	ommon Packet #6	
CP Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	1	
	Payload Length	29	
	CFG Type	2 (CFG_REPLY)	
	RESERVED	1	
	Configuration Attributes	See below	
SA Payload	Same as Common Packet #6		
TSi Payload	Other fields are same as Common Packet #6		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #6		

Configuration Attributes	Reserved	1
--------------------------	----------	---

Attribute Type	INTERNAL_IP6_ADDRESS	
Length	17	
Value	IPv6 address Prefix Y::1	
	Prefix-length 128	

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	Prefix Y::1
	Ending Address	Prefix Y::1

Packet #3: Echo Request packet

IPv6 Header	Same as Common Packet #20		
ESP	Same as Common Packet #20		
IPv6 Header	Source Address Prefyx Y::f		
	Destination Address		
ICMPv6 Header	Same as Common Packet #20		

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH1 transmits an Echo Request to NUT internal address and TN1 forwards an Echo Request with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96. The inner packet is sent from NUT internal address.

Possible Problems:

• The implementation may not set single configuration attribute by the implementation policy. In this case, Configuration Payload contains multiple configuration attributes.

Test IKEv2.EN.I.2.1.2.4: Receipt of IKE_AUTH response without CFG_REPLY

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4718] - Sections 6.8

Test Setup:

• Network Topology
Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for INTERNAL_IP6_ADDRESS. The traffic selector must be configured by the following table.

Traffic Selector		
Source	Destination	

	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY

^{*} NUT must propose Traffic Selector covering above address range.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	V1
(End-Node) (SC	GW)
	(Judgment #1)
	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
>	IKE_AUTH request (HDR, SK {IDi, AUTH,
<	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
<	INFORMATIONAL request (HDR, SK {}) (Packet #3)
> 	INFORMATIONAL response (HDR, SK {}) (Judgment #3) /

Packet #1	See Common Packet #2
Packet #2	See Below
Packet #3	See Common Packet #17

• Packet #2: IKE_AUTH response packet

IPv6 Header	Same as C	ommon Packet #6
UDP Header	Same as C	ommon Packet #6
IKEv2 Header	Same as C	ommon Packet #6
E Payload	Same as C	ommon Packet #6
IDr Payload	Same as C	ommon Packet #6
AUTH Payload	Next Payload	33 (SA)
	Other fields are same as C	ommon Packet #6
SA Payload	Same as C	ommon Packet #6
TSi Payload	Other fields are same as C	ommon Packet #6
	Traffic Selectors	See below
TSr Payload	Same as C	ommon Packet #6

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	Prefix Y::1
	Ending Address	Prefix Y::1

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT. The message does not include any Configuration payloads.
- 6. TH1 transmits an INFORMATIONAL request with no payload to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with no payload to the TN1.

Possible Problems:

• The implementation may not set single configuration attribute by the implementation policy. In this case, Configuration Payload contains multiple configuration attributes.

Test IKEv2.EN.I.2.1.2.5: Receipt of unrecognized Configuration Attributes

Purpose:

To verify an IKEv2 device properly handles unrecognized Configuration Attributes.

References:

• [RFC 4306] - Sections 2.19 and 3.15

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REQUEST for INTERNAL_IP6_ADDRESS. The traffic selector must be configured by the following table.

Traffic Selector		
Source	Destination	

	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	Link Y	ANY	ANY	NUT (internal address)	ANY	ANY
Outbound	NUT (internal address)	ANY	ANY	Link Y	ANY	ANY

^{*} NUT must propose Traffic Selector covering above address range.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(End-Node)	(SGW)	
	> I	KE_SA_INIT request (HDR, SAi1, KEi, Ni)
	((Judgment #1)
<	I	KE_SA_INIT response (HDR, SAr1, KEr, Nr)
	((Packet #1)
	> I	KE_AUTH request (HDR, SK {IDi, AUTH,
		<pre>CP(CFG_REQUEST), SAi2, TSi, TSr})</pre>
	(Judgment #2)
<		KE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
	(Packet #2)
<		NFORMATIONAL request (HDR, SK {})
	(Packet #3)
	> I	NFORMATIONAL response (HDR, SK {})
	(Judgment #3)
V	V	

Packet #1	See Common Packet #2	
Packet #2	See Below	
Packet #3	See Common Packet #17	

• Packet #2: IKE_AUTH response packet

IPv6 Header	Same as C	ommon Packet #6	
UDP Header	Same as C	ommon Packet #6	
IKEv2 Header	Same as Common Packet #6		
E Payload	Same as Common Packet #6		
IDr Payload	Same as C	ommon Packet #6	
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as Common Packet #6		
CP Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length	29	
	CFG Type	2 (CFG_REPLY)	
	RESERVED	0	
	Configuration Attributes	See below	
SA Payload	Same as Common Packet #6		
TSi Payload	Other fields are same as Common Packet #6		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #6		

Configuration Attributes	Reserved	0
	Attribute Type	32767

Length		17
Value	IPv6 address	Prefix Y::1
	Prefix-length	128

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address Prefix	
	Ending Address	Prefix Y::1

Part A (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT. The message includes a Configuration Attribute of unrecognized Attribute Type.
- 6. TH1 transmits an INFORMATIONAL request with no payload to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with no payload to the TN1.

Possible Problems:

• The implementation may not set single configuration attribute by the implementation policy. In this case, Configuration Payload contains multiple configuration attributes.

Section 1.2. Responder

Section 1.2.1. Endpoint-to-Endpoint Transport

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.EN.R.1.1.1.1: Sending IKE_SA_INIT response

Purpose:

To verify an IKEv2 device transmits an IKE_SA_INIT response using properly Header and Payloads format

References:

- [RFC4306] Section 1.2, 2.10, 3.1, 3.2, 3.3, 3.4 and 3.9
- [RFC 4718] Sections 7.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.

Part B: SA Payload Format (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 4. Observe the messages transmitted on Link A.

Part C: KE Payload Format (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

Part D: Nonce Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including properly formatted IKE Header containing following values:

Figure 49 Header format

- An IKE_SA Initiator's SPI field is set to IKE_SA Initiator's SPI field value supplied in the first IKE_SA_INIT request message.
- An IKE_SA Responder's SPI field is set to a 64-bits value chosen by the NUT. It MUST not be zero.
- A Next Payload field is set to SA Payload (33).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_SA_INIT (34).
- A Flags field is set to (00000100)2 = (4)10.
- A Message ID field is set to zero.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 4: Judgment #1

			1		2		3		
	0 1 2	3 4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2 3	4 5 6	7 8 9 0 1		
	+-+-+-+	-+-+-+	+-+-	+-+-+-	+-+-+-+-+-+-+-	+-+-+-+	-+-+-+-+		
	! Next	34	!0!	0	! Length	44	!		
	+-+-+-+	-+-+-+	+-+-		+-+-+-+-+-+-+-		+-+-+-+-	1	
	!	0	! 4-4-4-	0	! Length	40 	! *-*-*-*-*		1
	! Numbe	r 1	! Prot	ID 1	! SPI Size 0	! Trans	Cnt 4 !		
!	!	3	!	0	+-+-+-+-+-+- ! Length	8	!		
Transform	! Type	1 (EN)	!	0	+-+-+-+-+-+- ! Transform ID	3	(3DES) !		
!	!	3	!	0	+-+-+-+-+-+- ! Length	8	!		 SA Payloa
Transform	! Type	2 (PR)	!	0	+-+-+-+-+-+-+- ! Transform ID	2	(SHA1) !	Proposal	
	!	3	!	0	+-+-+-+-+-+- ! Length	8	!		
Transform	! Type	3 (IN)	!	0	+-+-+-+-+-+-+- ! Transform ID	2	(SHA1) !		
	!	0	!	0	+-+-+-+-+-+- ! Length	8	!		
Transform					+-+-+-+-+-+-+-+- ! Transform ID			 	

Figure 50 SA Payload contents

The NUT transmits an IKE_SA_INIT response including properly formatted SA Payload containing following values (refer following figures):

Figure 51 SA Payload format

- A Next Payload field is set to KE Payload (34).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 52 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 40 bytes for this proposal according to Common Configuration.
- A Proposal # field is set to 1.
- A Protocol ID field is set to IKE (1).
- A SPI Size field is set to zero.
- A # of Transforms field is set to 4.

A Transform field is set to following (There are 4 Transform Structures).

Figure 53 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

• A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.

- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for PRF_HMAC_SHA1.
- A Transform Type field is set to PRF (2).
- A RESERVED field is set to zero.
- A Transform ID set to PRF_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #4

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for 1024 MODP Group.
- A Transform Type field is set to D-H (4).
- A RESERVED field is set to zero.
- A Transform ID set to Group2 (2).

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including properly formatted KE Payload containing following values:

Figure 54 KE Payload format

- A Next Payload field is set to Nonce Payload (40).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 136 bytes for Group 2.
- A DH Group field is set to Group2 (2).
- A RESERVED field is set to zero.
 - A Key Exchange Data field is set to Diffie-Hellman public value. The length of

the Key Exchange Data field must be equal to 1024bit.

• The length of the Key Exchange Data field must be equal to 1024bit.

Part D

Step 8: Judgment #4

The NUT transmits an IKE_SA_INIT response including properly formatted Nonce Payload containing following values:

Figure 55 Nonce Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Nonce Data field is set to random data generated by the transmitting entity.
- The size of the Nonce must between 16 and 256 octets.

Possible Problems:

• IKE_SA_INIT response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
SA, KE, Nr,
[N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)],
CERTREQ+],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.EN.R.1.1.1.2: Sending IKE_AUTH response

Purpose:

To verify an IKEv2 device transmits an IKE_AUHT response using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
1	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
<u> </u>	(Judgment #2)
V	V
N: USE_TRANSP	PORT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: IDr Payload Format (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: Notify Payload Format (BASIC)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: SA Payload Format (BASIC)

- 21. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSi Payload Format (BASIC)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 28. Observe the messages transmitted on Link A.

Part H: TSr Payload Format (BASIC)

- 29. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 30. Observe the messages transmitted on Link A.
- 31. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 32. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted IKE Header containing following values:

Figure 56 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA
 Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to IKE_AUTH (35).
- A Flags field is set to (00000100)2 = (4)10.
- A Message ID field is set to 1.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Encrypted Payload containing following values:

1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	9 0 1
+-	-+-+-+
! Next Payload !C! RESERVED ! Payload Length	!
+-	-+-+-+
! Initialization Vector	!
! (length is block size for encryption algorithm)	!
+-	-+-+-+
~ Encrypted IKE Payloads	~
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	-+-+-+
! Padding (0-255 octets)	!
+-+-+-+	-+-+-+
! Pad Leng	th!
+-	-+-+-+
~ Integrity Checksum Data	~
+-	-+-+-+

Figure 57 Encrypted payload

- A Next Payload field is set to IDr Payload (36).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted ID Payload containing following values:

	101	OIII	
	1	2	3
012345678	9012345	678901234567	8 9 0 1
+-+-+-+-+-+-+-+	-+-+-+-+-+	-+-+-+-+-+-+-+-+-+-	+-+-+
! Next Payload !C!	RESERVED !	Payload Length	!
+-+-+-+-+-+-+-+-+	-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-+-+-	+-+-+
! ID Type !		RESERVED	
+-+-+-+-+-+-+-+-+	-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-+-+-	+-+-+
!			!
~	Identificatio	n Data	~
!			!
+-+-+-+-+-+-+-+	-+-+-+-+-+-+	-+-+-+-+-+-+-+-+-+-+-	+-+-+

Figure 58 ID Payload format

- A Next Payload field is set to AUTH Payload (39).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field is set to ID_IPV6_ADDR (5).
- A RESERVED field is set to zero.
- An Identification Data field is set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 59 AUTH Payload format

- A Next Payload field is set to Notify Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1
- An Auth Method field is set to Shared Key Message Integrity Code (2).
- A RESERVED field is set to zero.
- An Authentication Data field is set to correct authentication value.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Notify Payload containing following values:

Figure 60 Notify Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 8 bytes for USE_TRANSPORT.
- A Protocol ID field is set to IKE_SA (1).
- A SPI Size field is set to zero.
- A Notify Message Type field is set to USE_TRANSPORT_MODE (16391)

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 24: Judgment #2

					FUKUM				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -		
	! Next	44	!0!	0	! Length	40	!		
	+-+-+-+	+-+	-+-+-+-		+-+-+-+-+-+-+		-+-+-+-+ -		
	! 0	•	!	0	! Length	36	!	!	!
					+-+-+-+-+-+-+-+			1	
	! Number	1	! PIOL	טו טו	! SPI Size 4	! ITans	CHL 3!	1	1
	! SPI val	 IIE					 	 	
	+-+-+-+	+-+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		i
1	! 3	3	!	0	! Length	8	!	i	i
Transform	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+	İ	SA Payloa
1	! Type 1	(EN)	!	0	! Transform ID	3	(3DES) !	Proposal	
	+-+-+-+	+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		
_ !	! 3		!	0	! Length	8	!	!	!
Transform					+-+-+-+-+-+-+-+-+		-+-+-+-+		!
I	! Type 3	3 (IN)			! Transform ID +-+-+-+		(SHA1) !		1
1	! ()	 	0	! Length	8	 	 	
Transform	•		-+-+-+-		: Longtn +-+-+-+-+-+	-	· -+-+-+-+		
	! Type 5				! Transform ID	0	(No) !	i	i
	+-+-+-+	+-+-+	, -+-+-+-	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -	· ·	

Figure 61 SA Payload contents

The NUT transmits an IKE_AUTH response including properly formatted SA Payload containing following values (refer following figures):

Figure 62 SA Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 63 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

Figure 64 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

• A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.

- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSi Payload containing following values:

Figure 65 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

1 01(011)	
1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-	+-+-+
! TS Type !IP Protocol ID* Selector Length	- 1
+-	+-+-+
Start Port* End Port*	1
+-	+-+-+
!	!
~ Starting Address*	~
!	!
+-	+-+-+
!	!
~ Ending Address*	~
!	!
+-	+-+-+

Figure 66 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to TN1 address.
- An Ending Address field is set to TN1 address.

Part H

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 32: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSr Payload containing following values:

Figure 67 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

Traffic Selectors field is set to following.

Figure 68 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to NUT address.
- An Ending Address field is set to NUT address.

Possible Problems:

• IKE_AUTH response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDr,
[CERT+],
AUTH,
[CP(CFG_REPLY)],
[N(IPCOMP_SUPPORTED)],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[N(ADDITIONAL_TS_POSSIBLE)],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.EN.R.1.1.1.3: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles CHILD_SA negotiated by the Initial Exchanges using Pre-shared key.

References:

• [RFC 4306] - Sections 1.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	(Packet #1)
j	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
li	(Judgment #1)
li	
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Judgment #2)
	(Judymetri #2)
	IDaga (Faha Paguast)
<	IPsec {Echo Request}
	(Packet #3)
	> IPsec {Echo Reply}
	[(Judgment #3)
V	V
N: USE_TRANSF	PRT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.

6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Group 1.2. Use of Retransmission Timers

Test IKEv2.EN.R.1.1.2.1: Receipt of retransmitted IKE_SA_INIT request

Purpose:

To verify an IKEv2 device transmits an IKE_SA_INIT response when the device received a retransmitted IKE_SA_INIT request.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node	(End-Node)
1 1	
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	(Packet #1)
j	ÎKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i	(Judgment #1)
l i	
l i	* wait until retrans timer expires
l i	X IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i	(Judgment #2)
l i	(g
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	(Packet #2)
l i	
l i	(Judgment #3)
l i	(9)
l v	V
	•

Packet #1	See Common Packet #1
Packet #2	See Common Packet #1
	(The Message ID is the same as Packet #1)

Part A: (BASIC)

- 1. TN starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. Observe the messages transmitted on Link A.
- 4. TN1 retransmits same IKE_SA_INIT request as the message transmitted in Step 1 to the

NUT.

5. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 3: Judgment #2

The NUT never retransmits the same IKE_SA_INIT response as the response transmitted at Step 2.

Step 5: Judgment #3

The NUT transmits the same IKE_SA_INIT response as the response transmitted at Step 2.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.2.2: Receipt of retransmitted IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits an IKE_AUTH response when the device received a retransmitted IKE_AUTH request.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

Procedure:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	11
(End-Node) (End-	Node)
į į	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
 	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>
> 	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)</pre>
	wait until retrans timer expires IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #3)
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #3)</pre>
 > 	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #4)
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #3
	(The Message ID is the same as Packet #1)

Part A: (BASIC)

1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. After reception of an IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. Observe the messages transmitted on Link A.
- 6. TN1 retransmits the same IKE_AUTH request as the request transmitted in Step 3 to the NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 5: Judgment #3

The NUT never retransmits the same IKE_AUTH response as the response transmitted at Step 4.

Step 7: Judgment #4

The NUT transmits the same IKE_AUTH response as the response transmitted at Step 4.

Possible Problems:

• None.

Group 1.3. State Synchronization and Connection Timeouts

Test IKEv2.EN.R.1.1.3.1: State Synchronization with ICMP messages

Purpose:

To verify that an IKEv2 device doesn't conclude that the other endpoint has faild by receiving ICMP Error messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TR1	TN1	
(End-Node)	(Router)	(End-Node)	
	1	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) > IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)	
		IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)	
	- 	IPsec {Echo Request} (Packet #3) > IPsec {Echo Reply} (Judgment #3)	
	 	Destination Unreachable (No route to destination) (Packet #4)	
	 	IPsec {Echo Request} (Packet #5)	
V	 	l V	
N: USE_TRANSPO	N: USE_TRANSPORT_MODE		

Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See below
Packet #5	See Common Packet #19

• Packet #4: ICMPv6 Destination Unreachable

IPv6 Header	Source Address	TR1's Global Address on Link A
	Destination Address	NUT's Global Address on Link A
ICMPv6 Header	Туре	1
	Code	0

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of an Echo Reply from NUT, TR1 transmits ICMP Destination Unreachable Message to the NUT.
- 8. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.3.2: State Synchronization with IKE messages

Purpose:

To verify that an IKEv2 device doesn't conclude that the other endpoint has faild by receiving cryptographically unprotected IKE message.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
i i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
i i	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})</pre>
 <	(Judgment #2) IPsec {Echo Request}
	(Packet #3) IPsec {Echo Reply} (Judgment #3)
< 	cryptographically unprotected IKE message (Packet #4)
i i	<pre>IPsec {Echo Request} (Packet #5)</pre>
>	<pre>IPsec {Echo Reply} (Judgment #4)</pre>
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See below

Packet #5 | See Common Packet #19

• Packet #4: cryptographicaly unprotected INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link A
	Destination Address	NUT's Global Address on Link X
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	any
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	3 (ESP)
	SPI Size	0
	Notify Message Type	11 (INVALID_SPI)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of an Echo Reply from NUT, TN1 transmits a cryptographically unprotected INFORMATIONAL request with Notify payload of type INVALID_ SPI to the NUT.
- 8. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None

Test IKEv2.EN.R.1.1.3.3: Close connections when receiving INITIAL_CONTACT

This test case was deleted at revision 1.1.0.

Test IKEv2.EN.R.1.1.3.4: Receiving Liveness check

Purpose:

To verify that an IKEv2 device can respond to INFORMATIONAL request for liveness check.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (En	
	,
<	- IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	LINE AUTH CONTROL (UDD OK (LD: AUTH N OA:O TO: TO:)
<	- IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2) > IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Judgment #2)
	(Judgmont #2)
<	- INFORMATIONAL request (HDR, SK {})
l i	(Packet #3)
	> INFORMATIONAL response (HDR, SK {})
ļ ļ	(Judgment #3)
V	V
N: USE_TRANSPORT_MO	DE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #17

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an

INFORMATIONAL request with no payloads.

6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Test IKEv2.EN.R.1.1.3.5: Receiving Delete Payload for IKE_SA

Purpose:

To verify an IKEv2 device can respond to INFORMATIONAL request with a Delete Payload, when IKE_SA is deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TUN		
(End-Node) (End-	-Node)	
 <	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)	
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)	
 <	 IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)	
>	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)	
 < 	 INFORMATIONAL request (HDR, SK {D}) (Packet #3)	
>	INFORMATIONAL response (HDR, SK {}) (Judgment #3)	
V	l I	
N: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

• Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE SA Responder's SPI	any

		FOROW
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	2
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of
		the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index	none

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with a Delete payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with no payloads.

Possible Problems:

• None

Test IKEv2.EN.R.1.1.3.6: Receiving Delete Payload for CHILD_SA

Purpose:

To verify an IKEv2 device can respond to INFORMATIONAL request with a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT T	V1
(End-Node) (End	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	 IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2)
>	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
l i	(Judgment #2)
l i	
<	INFORMATIONAL request (HDR, SK {D})
	(Packet #3)
>	, , , , , , , , , , , , , , , , , , , ,
	(Judgment #3)
l v	V
N: USE_TRANSPORT_MOD	.

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

• Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKF SA Responder's SPI	any

	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	2
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of
		the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with a Delete payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the TN1's inbound SPI value to be deleted as SPI value.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with a Delete payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the NUT's inbound SPI value to be deleted as SPI value.

Possible Problems:

• None

Group 1.4. Version Numbers and Forward Compatibility

Test IKEv2.EN.R.1.1.4.1: Receipt of a higher minor version number

Purpose:

To verify an IKEv2 device accepts a request with a higher minor version number and respond to the request.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(End-Node)	(End-Node)	
<	IKE_SA_INIT request	(HDR, SAi1, KEi, Ni)
	(Packet #1)	
	> IKE_SA_INIT respons	e (HDR, SAr1, KEr, Nr)
	(Judgment #1)	
V	V	

Packet #1 See below

• Packet #1: IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1	
UDP Header	Same as the Common Packet #1	
IKEv2 Header	Other fields are same as the Common Packet #1	
	Major Version	2
	Minor Version	1
SA Payload	Same as the Common P	acket #1
KE Payload	Same as the Common Packet #1	
Ni, Nr Payload	Same as the Common P	acket #1

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request with a higher minor version number.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.4.2: Receipt of a higher major version number

Purpose:

To verify an IKEv2 device drops a request with a higher major version number and send a notification message.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
Facket #1	See pelow

Packet#1:

IPv6 Header	Same as the Common Packet #1		
UDP Header	Same as the Common Packet #1		
IKEv2 Header	Other fields are same as the Common Packet #1		
	Major Version	3	
SA Payload	Same as the Common Packet #1		
KE Payload	Same as the Common Packet #1		
Ni Payload	Same as the Common Packet #1		

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response with a Notify payload of type INVALID_MAJOR_VERSION containing following values:

POROW			
1 2	3		
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	9 0 1		
+-	-+-+-+		
! Next Payload !C! RESERVED ! Payload Length	!		
+-	-+-+-+		
! Protocol ID ! SPI Size ! Notify Message Type	e !		
+-			
!	!		
~ Security Parameter Index (SPI)	~		
!	!		
+-			
1			
~ Notification Data ~			
!	!		
+-			

Figure 69 Notify Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A SPI Size field is set to zero.
- A Notify Message Type field is set to INVALID_MAJOR_VERSION (5).
- A Notification Data field is set to the highest version number it supports (2).

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.4.3: Unrecognized payload types and critical bit is not set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is not set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
(End-Node)
               (End-Node)
    |<----| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #1)
          ----->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Judgment #1)
         ----- IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
                  | (Packet #2)
             ----->| IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
                   | (Judgment #2)
           -----| CREATE_CHILD_SA request (HDR, SK {P, N, N+, SA, Ni, TSi, TSr})
                  | (Packet #3)
              ---->| CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
                   | (Judgment #3)
P: Payload with an invalid payload type
N: REKEY SA
N+: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

Packet #3: CREATE_CHILD_SA request

IPv6 Header	All fields are same as Common Packet #13 Payload	
UDP Header	All fields are same as Common Packet #13 Payload	
IKEv2 Header	All fields are same as Common Packet #13 Payload	
F Payload	Next Payload	Invalid navload type value

7 0110111		
	Other fields are same as Common Packet #13	
Invalid Payload	Next Payoad 41 (N	
	Critical	0
	Reserved	0
	Payload Length	4
N Payload	All fields are same as Common Packet #13 Payload	
N Payload	All fields are same as Common Packet #13 Payload	
SA Payload	All fields are same a	as Common Packet #13 Payload
Ni, Nr Paylaod	All fields are same a	as Common Packet #13 Payload
TSi Paylaod	All fields are same a	as Common Packet #13 Payload
TSr Payload	All fields are same a	as Common Packet #13 Payload

Part A: Invalid payload type 1 (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE CHILD SA request including a payload with invalid payload

type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.

24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.4.4: Unrecognized payload types and critical bit is set

Purpose:

To verify an IKEv2 device drops invalid payload types when the invalid type payload's critical bit is set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (Er	nd-Node)
1	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	> (Facket #1) > (KE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)
	CREATE_CHILD_SA request (HDR, SK {N, P, N+, SA, Ni, TSi, TSr}) (Packet #3)
	> CREATE_CHILD_SA response (HDR, SK {N(UNSUPPORTED_CRITICAL_PAYLOAD)}) (Judgment #3)
V	V
P: Payload with an	invalid payload type
N: REKEY SA	
N+: USE_TRANSPORT_N	MODE
332_11011101 0111_1	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	All fields are same as Common Packet #13 Payload
UDP Header	All fields are same as Common Packet #13 Payload
IKEv2 Header	All fields are same as Common Packet #13 Payload
F Dayload	All fields are same as Common Packet #13 Payload

N Payload	All fields are same as Common Packet #13 Payload	
N Payload	Next Payoad	Invalid payload type value
	Other fields ar	e same as Common Packet #13
Invalid Payload	Next Payoad	33 (SA)
	Critical 1	
	Reserved 0	
	Payload Length	4
SA Payload	All fields are same as Common Packet #13 Payload	
Ni, Nr Paylaod	All fields are same as Common Packet #13 Payload	
TSi Paylaod	All fields are same as Common Packet #13 Payload	
TSr Payload	All fields are same as Common Packet #13 Payload	

Part A: Invalid payload type 1 and Critical bit is set (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 1 and the pointed pyaload's Critical bit is set.
- 6. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 and Critical bit is set (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 32 and the pointed pyaload's Critical bit is set.
- 12. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 and Critical bit is set (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. After reception of IKE_AUTH response from the NUT, TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 49 and the pointed pyaload's Critical bit is set.
- 18. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 and Critical bit is set (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE AUTH response from the NUT, TN1 transmits a

CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 255 and the pointed pyaload's Critical bit is set.

24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response. The response has a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (1).

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response. The response has a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (32).

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response. The response has a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (49).

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response. The response has a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (255).

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.4.5: Invalid Order Payloads

Purpose:

To verify an IKEv2 device properly handles IKE message with invalid order payloads.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
	KEi payload and Ni payload replace each other.

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT never transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

• None.

Group 1.5. Cookies

Test IKEv2.EN.R.1.1.5.1: Cookies

Test IKEv2.EN.R.1.1.5.2: Invalid Cookies

Test IKEv2.EN.R.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD

Test IKEv2.EN.R.1.1.5.4: Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Initiator

Group 1.6. Cryptographic Algorithm Negotiation

Test IKEv2.EN.R.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA

Purpose:

To verify an IKEv2 device properly handles various algorithms for IKE_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part H, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA_INIT exchanges Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	DELETED	DELETED	DELETED	DELETED
Part C	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part E	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14
Part F	ENCR_3DES	PRF_HMAC_SHA2_256	AUTH_HMAC_SHA1_96	Group 2
Part G	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA2_256_128	Group 2
Part H	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 24

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3

Packet #1: IKE_SA_INIT request

Packet #1 is same as Common Packet #1 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform	Next Payload		3 (more)
	Reserved		0
	Transform Lengt	h	8
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part B:

This test case is deleted at revision 1.0.4.

Part C:

SA Transform of Tranform Type PRF is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	4 (AES128_XCBC)

Part D:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

	JI	· · · · · · · · · · · · · · · · · · ·
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	5 (AES_XCBC_96)

Part E

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	14 (2048 MODP Group)

Part F:

SA Transform of Tranform Type PRF is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	5 (HMAC_SHA2_256)

Part G:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0

Transform Length	8
Transform Type	3 (INTEG)
Reserved	0
Transform ID	12 (HMAC_SHA2_256_128)

Part H:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
		24 (2048-bit MODP Group with
	Transform ID	256-bit Prime Order Subgroup)

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

This test case is deleted at revision 1.0.4.

Part C: PRF PRF_AES128_CBC (ADVANCED)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: D-H Group Group 14 (ADVANCED)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: PRF PRF_HMAC_SHA2_256 (ADVANCED)

- 21. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.

24. Observe the messages transmitted on Link A.

Part G: Integrity Algorithm AUTH_HMAC_SHA2_256_128 (ADVANCED)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 28. Observe the messages transmitted on Link A.

Part H: D-H Group Group 24 (ADVANCED)

- 29. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 30. Observe the messages transmitted on Link A.
- 31. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 32. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

This test case is deleted at revision 1.0.4.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE AUTH response including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part D

Step 14: Judgment #1

The NUT transmits an IKE SA INIT response including "ENCR 3DES",

"PRF HMAC SHA1", "AUTH AES XCBC 96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 14" as accepted algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA2_256", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA2_256_128" and "D-H Group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part H

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 24" as accepted algorithms.

Step 32: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.EN.R.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles various algorithms for CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

From part A to part G, TN1 transmits an IKE_AUTH request including a SA payload which contains the transforms as follows:

	IKE_AUTH exchanges Algorithms		
	Encryption	Integrity	Extended Sequence Numbers
Part A	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Part B	ENCR_AES_CTR	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Part C	ENCR_NULL	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Part D	ENCR_3DES	AUTH_AES_XCBC_96	No Extended Sequence Numbers
Part E	ENCR_3DES	NONE	No Extended Sequence Numbers
Part F	ENCR_3DES	AUTH_HMAC_SHA1_96	Extended Sequence Numbers
Part G	ENCR_3DES	AUTH_HMAC_SHA2_256_128	No Extended Sequence Numbers

Procedure:

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #19

Packet #2: IKE_AUTH request

Packet #2 is same as Common Packet #3 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

Transmoni.			
SA Transform	Next Payload	3 (more)	
	Reserved		0
	Transform Lengt	8	
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute Attribute Type		14 (Key Length)
		Attribute Value	128

Part B:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform	Next Payload		3 (more)
	Reserved		0
	Transform Length		8
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		13 (AES_CTR)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part C:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

isii oiii.		
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	1 (ENCR)
	Reserved	0
	Transform ID	11 (ENCR_NULL)

Part D:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	5 (AES_XCBC_96)

Part E:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	0 (NONE)

Part F:

SA Transform of Tranform Type ESN is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	1 (Extended Sequence Numbers)

Part G:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	12 (HMAC_SHA2_256_128)

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Encryption Algorithm ENCR_NULL (ADVANCED)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.

- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 24. Observe the messages transmitted on Link A.

Part E: Integrity Algorithm NONE (ADVANCED)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 28. Observe the messages transmitted on Link A.
- 29. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 30. Observe the messages transmitted on Link A.

Part F: Extended Sequence Numbers (ADVANCED)

- 31. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 32. Observe the messages transmitted on Link A.
- 33. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 34. Observe the messages transmitted on Link A.
- 35. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 36. Observe the messages transmitted on Link A.

Part G: Integrity Algorithm AUTH_HMAC_SHA2_256_128 (ADVANCED)

- 37. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 38. Observe the messages transmitted on Link A.
- 39. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 40. Observe the messages transmitted on Link A.
- 41. After reception of IKE_AUTH response from the NUT, TN transmits an Echo Request with IPsec ESP with the accepted cryptographic suite to the NUT.
- 42. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_AES_CBC", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_AES_CTR", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_NULL", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part E

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "NONE" and "No Extended Sequence Numbers" as accepted algorithms. However, the transform indicating "NONE" can be omitted.

Step 30: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part F

Step 32: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 34: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "Extended Sequence Numbers" as accepted algorithms.

Step 36: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part G

Step 38: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 40: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA2_256_128" and "No Extended Sequence Numbers" as accepted algorithms.

Step 42: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.6.3: Receiving Multiple Transforms for IKE_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with an multiple transforms.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(End-Node)	(End-Node)	
 < 	(Packet > IKE_SA_	INIT response (HDR, SAr1, KEr, Nr)
	(Judgmer	nt #1)
V	V	

Packet #1	See below
-----------	-----------

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the transforms as follows:

	IKE_SA_INIT exchanges Algorithms				
	Encryption	PRF	Integrity	D-H Group	
Part A	ENCR_AES_CBC ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part B	ENCR_3DES	PRF_AES128_CBC PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	Group 2	
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 or Group 24, Group 2	

• Packet #1 IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1
UDP Header	Same as the Common Packet #1
IKEv2 Header	Same as the Common Packet #1
SA Pavload	Other fields are same as the common packet #1

	SA Proposals	See SA Table below	
KE Payload	Sam	e as the Common Packet #1	
Ni, Nr Payload	Same as the Common Packet #1		

Proposal #1	SA Proposal	Next Payload		0 (last)
	Reserved		0	
	Proposal Length		44	
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	3	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
		SA Transform	Reserved	0
			Transform ID	3 (3DES)
			Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
		SA Transform	Transform ID	2 (HMAC_SHA1)
			Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (BASIC)

7. TN1 starts to negotiate with NUT by sending IKE SA INIT request including a SA payload

as described above.

8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.6.4: Receiving Multiple Proposals for IKE_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with multiple proposals.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
-----------	-----------

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the proposals as follows:

	IKE_SA_INIT exchanges Algorithms					
	Proposals	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
FartA	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	Proposal #1	IKE	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part B	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part G	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part D	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 or Group 24
rant D	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2

Packet #1 IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1
UDP Header	Same as the Common Packet #1
IKEv2 Header	Same as the Common Packet #1
SA Payload	Other fields are same as the common packet #1

	SA Proposals	See SA Table below	
KE Payload	Sam	e as the Common Packet #1	
Ni, Nr Payload	Same as the Common Packet #1		

Proposal #1	SA Proposal	Next Payload		2 (more)
1.15posai ii Torri Toposai		Reserved		2 (110re)
	Proposal Length		44	
		Proposal #		1
	Proposal # Protocol ID		1 (IKE)	
	SPI Size		T (INE.	
		# of Transforms		5
		SA Transform	T	
		SA Transform	Next Payload Reserved	3 (more)
	İ			
			Transform Length	1 /FNOD
			Transform Type	1 (ENCR)
			Reserved	A
		04 T 6	Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more
			Reserved	(
			Transform Length	8
			Transform Type	2 (PRF
			Reserved	(
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more
			Reserved	(
			Transform Length	8
			Transform Type	3 (INTEG
			Reserved	(
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last
			Reserved	(
			Transform Length	8
			Transform Type	4 (D-H
			Reserved	(
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last
		Reserved		(
		Proposal Length		44
		Proposal # Protocol ID SPI Size		2
				1 (IKE
				(
		# of Transforms	5	Ę
		SA Transform	Next Payload	3 (more
			Reserved	(
			Transform Length	8
			Transform Type	1 (ENCR
			Reserved	
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more
			Reserved	(
			Transform Length	8
			Transform Type	2 (PRF
			Reserved	(
			Transform ID	2 (HMAC_SHA1
		SA Transform	Next Payload	3 (more
			Reserved	
			Transform Length	8
			Transform Type	3 (INTEG
			Reserved	3 (
		Transform ID	2 (HMAC_SHA1_96)	
		SA Transform	Next Payload	0 (last)
			Reserved	0 (1835)

1 OKOW		
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.6.5: Receiving Multiple Transforms for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles an IKE_AUTH request with multiple transforms.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT -	TN1
(End-Node) (End	d-Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
;	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
;	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
V	V
N: USE_TRANSPORT_MOD	DE

Packet #1	See Common Packet #1
Packet #2	See below

From part A to part C, TN1 transmits an IKE_AUTH request including a SA payload which contains the transforms as follows:

	IKE_AUTH exchanges Algorithms		
	Encryption Integrity ES		ESN
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #3
UDP Header	Same as the Common Packet #3
IKEv2 Header	Same as the Common Packet #3
E Payload	Same as the Common Packet #3
IDi Payload	Same as the Common Packet #3
AUTH Payload	Same as the Common Packet #3
N Payload	Same as the Common Packet #3
SA Payload	Other fields are same as the Common Packet #3
	SA Proposals See below
TSi Payload	Same as the Common Packet #3
TSr Payload	Same as the Common Packet #3

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengt	h	40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.6.6: Receiving Multiple Proposals for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles an IKE_AUTH request with multiple proposals.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (End-Node)
	 IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
V	V
N: USE_TRANSPORT_	MODE

Packet #1 See Common Packet #1

Packet #2 See below

TN1 transmits an IKE_AUTH request including a SA payload which contains the two proposals as follows:

	IKE_AUTH exchanges Algorithms				
	Proposal	Protocol ID	Encryption	Integrity	ESN
Part A	Proposal #1	ESP	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
rait A	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part B	Proposal #1	ESP	ENCR_3DES	AUTH_AES_XCBC_96	No ESN
Falt D	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part C	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN
Fart	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN

IPv6 Header	Same as the Common Packet #3
UDP Header	Same as the Common Packet #3
IKEv2 Header	Same as the Common Packet #3
E Payload	Same as the Common Packet #3
IDi Payload	Same as the Common Packet #3
AUTH Payload	Same as the Common Packet #3
N Payload	Same as the Common Packet #3
SA Payload	Other fields are same as the Common Packet #3
	SA Proposals See below
TSi Payload	Same as the Common Packet #3
TSr Payload	Same as the Common Packet #3

Proposal #1	SA Proposal	Next Payload		2 (more)
		Reserved		0
		Proposal Length		40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengt	h	40
		Proposal #		2
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0

, 01(011)	
Transform Length	8
Transform Type	5 (ESN)
Reserved	0
Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.6.7: Sending INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles a KE payload which has different D-H Group # from accepted D-H Group #.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. Enable PFS.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	l1
(End-Node) (End-	Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)
>	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA(DH#2, DH#14), Ni, KEi(DH#14), TSi, TSr}) (Packet #3)
>	CREATE_CHILD_SA response (HDR, SK { N(INVALID_KE_PAYLOAD(DH#2)) }) (Judgment #3)
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA(DH#2, DH#14), Ni, KEi(DH#2), TSi, TSr}) (Packet #4)
> 	CREATE_CHILD_SA response (HDR, SK {N+, SA(DH#2), Nr, KEr(DH#2), TSi, TSr}) (Judgment #4)
\ \	
N: REKEY_SA	
N+: USE_TRANSPORT_MOD	DE CONTRACTOR OF THE CONTRACTO
It is possible to use	e DH#24 instead of DH#14.

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below
Packet #4	See below

Packet #3: CREATE_CHILD_SA request for rekeying CHILD_SA

IPv6 Header	Same as the Common Packet #13		
UDP Header	Same as the Common Packet #13		
IKEv2 Header	Same a	as the Common Packet #13	
E Payload	Same a	as the Common Packet #13	
N Payload	Same a	as the Common Packet #13	
N Payload	Same a	as the Common Packet #13	
SA Payload	Other fields are same a	as the Common Packet #13	
	SA Proposals	See SA Table below	
Ni, Nr Payload	Other fields are same as the Common Packet #13		
	Next Payload 34 (KE)		
KEi Payload	Next Payload 44 (TSi)		
	Critical 0		
	Reserved 0		
	Payload Length 264		
	DH Group # 14		
	Reserved 0		
	Key Exchange Data DH#14 public key value		
TSi Payload	Same as the Common Packet #13		
TSr Payload	Same as the Common Packet #13		

SA Payloads

SA Proposal	Next Payload		0 (last)
	Reserved		0
	Proposal Length		48
	Proposal #		1
	Protocol ID		1 (IKE)
	SPI Size		Ó
	# of Transforms		5
	SA Transform	Next Payload	3 (more)
		Reserved	Ó
		Transform Length	8
		Transform Type	1 (ENCR)
		Reserved	0
		Transform ID	3 (3DES)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	2 (PRF)
		Reserved	Ó
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	Ó
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	Ó
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	Ó
		Transform ID	2 (1024 MODP Group)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	14 (2048 MODP Group)

Packet #4: CREATE_CHILD_SA request for rekeying CHILD_SA

IPv6 Header	Other fields are same as the Common Packet #13
UDP Header	Other fields are same as the Common Packet #13

IKEv2 Header	Other fields are same a	s the Common Packet #13	
E Payload	Other fields are same as the Common Packet #13		
N Payload	Other fields are same a	s the Common Packet #13	
N Payload	Other fields are same as the Common Packet #13		
SA Payload	Same as Packet #3		
Ni, Nr Payload	Other fields are same as the Common Packet #13		
	Next Payload 34 (KE)		
KEi Payload	Other fields are same as the Packet #3		
	DH Group # 2		
	Key Exchange Data DH#2 public key value		
TSi Payload	Same as the Common Packet #13		
TSr Payload	Same as the Common Packet #13		

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs. The CREATE_CHILD_SA contains a D-H Group transform to use D-H Group 2 and D-H Group 14, and a Key Exchange payload which contains 14 (D-H Group 14) as DH Group # field and the Key Exchage Data. It is possible to use D-H Group 24 instead of D-H Group 14.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of CREATE_CHILD_SA response indicating INVALID_KE_PAYLOAD from the NUT, TN1 retransmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs. The CREATE_CHILD_SA request contains a D-H Group transform to use D-H Group 2 and D-H Group 14, and a Key Exchange payload which contains 2 (D-H Group 2) as DH Group # field and the Key Exchage Data. It is possible to use D-H Group 24 instead of D-H Group 14.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_KE_PAYLOAD which contains 2 (D-H Group 2) as Notification Data.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "D-H Group 2" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.6.8: Sending INVALID_KE_PAYLOAD in Initial Exchange

Purpose:

To verify an IKEv2 device properly handles KE payload which has different D-H Group # from accepted D-H Group #.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (End-Node)
<	IKE_SA_INIT request (HDR, SAi1(DH#2, DH#14), KEi(DH#14), Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD(DH#2)))
	(Judgment #1)
<	IKE_SA_INIT request (HDR, SAi1(DH#2, DH#14), KEi(DH#2), Ni)
	(Packet #2)
	> IKE_SA_INIT response (HDR, SAr1(DH#2), KEr(DH#2), Nr)
	(Judgment #2)
V	V
It is possible to	use DH#24 instead of DH#14.

Packet #1	See below
Packet #2	See Common packet #1

Packet #1: IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1		
UDP Header	Same as the Common Packet #1		
IKEv2 Header	Same as the Common Packet #1		
SA Payload	Other fields are same as the common packet #1		
	SA Proposals See SA Table below		
KEi Payload	Other fields are same as the common packet #1		
	DH Group # 14		
	Key Exchange Data DH#14 public key value		
Ni, Nr Payload	Same as the Common Packet #1		

SA Payloads

SA Proposal	Next Payload		0 (last)
	Reserved		0
	Proposal Length		48
	Proposal #		1
	Protocol ID		1 (IKE)
	SPI Size		0
	# of Transforms		5
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	1 (ENCR)
		Reserved	0
		Transform ID	3 (3DES)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	2 (PRF)
		Reserved	0
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	14 (2048 MODP Group)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload which contains a D-H Group transform proposes using D-H Group 2 and D-H Group 14, and a Key Exchange payload which contains 14 (D-H Group 14) as DH Group # field and the Key Exchange Data. It is possible to use D-H Group 24 instead of D-H Group 14.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request including KE payload with D-H Group 2 public key value to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD which contains 2 (D-H Group 2) as Notification Data. The message's IKE_SA Responder's SPI value is set to zero.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.6.9: Creating an IKE_SA without a CHILD_SA

Purpose:

To verify that an IKEv2 device can handles a failure of creating a CHILD_SA during the IKE_AUTH exchange.

References:

• [RFC 4718] - Sections 4.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
i i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>
>	<pre>IKE_AUTH response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}) (Judgment #2)</pre>
	<pre>INFORMATIONAL request (HDR, SK {}) (Packet #3)</pre>
	INFORMATIONAL response (HDR, SK {})
	(Judgment #3)
l v	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #17

Packet #2: IKE_AUTH request

Packet #2 is same as Common Packet #3 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform | Next Payload | 3 (more)

1 01(011)			
	Reserved		0
	Transform Length		8
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute Attribute Type		14 (Key Length)
		Attribute Value	128

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request with unacceptable SA proposal for the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including a Notify type of NO_PROPOSAL_CHOSEN.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Group 1.7. Traffic Selector Negotiation

Test IKEv2.EN.R.1.1.7.1: Narrowing Traffic Selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

• [RFC4306] - Section 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

		Traffic Selector				
	Source			Destination		
	Address	Address Next Layer Port		Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1	TCP	ANY	NUT	TCP	ANY
Outbound	NUT	TCP	ANY	TN1	TCP	ANY

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FOROM
NUT TN	1
(End-Node) (End-No	de)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
> 	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>
	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)</pre>
	IPsec {TCP SYN} (Packet #3)
	Psec {TCP RST} (Judgment #3)
	<pre>IPsec {ICMPv6 Echo Request} (Packet #4)</pre>
	IPsec {ICMPv6 Echo Reply}
i i	(Judgment #4)
l v v	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #3
UDP Header	Same as the	Common Packet #3
IKEv2 Header	Same as the	Common Packet #3
E Payload	Same as the	Common Packet #3
IDi Payload	Same as the	Common Packet #3
AUTH Payload	Same as the	Common Packet #3
N Payload	Same as the	Common Packet #3
SA Payload	Same as the Common Packet #3	
TSi Payload	Other fields are same as the Common Packet #3	
	Traffic Selectors See b	
TSr Payload	Other fields are same as the Common Packet #3	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535

Starting Address	NUT's Global Address on Link A
Ending Address	NUT's Global Address on Link A

• Packet #3: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The cryptographic checksum of the entire message
TCP Header	Source Port	500
	Destination Port	500
	Flags	SYN (0x02)

Part A (BASIC)

- 1. TN1 sends an IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 sends an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port on NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. The Traffic Selector is narrowed to allow only TCP (6) as IP Protocol.

Step 6: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT never transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.7.2: TS_UNACCEPTABLE

Purpose:

To verify an IKEv2 device properly handles the Traffice Selector.

References:

• [RFC 4306] - Sections 2.8 and 3.10.1

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

		Traffic Selector				
	Source			Destination		
	Address	Address Next Layer Port		Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1	TCP	ANY	NUT	TCP	ANY
Outbound	NUT	TCP	ANY	TN1	TCP	ANY

Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                   TN1
(End-Node)
                (End-Node)
                  --| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                    | (Packet #1)
               ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                    | (Judgment #1)
             -----| IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                   | (Packet #2)
             ----->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                    | (Judgment #2)
             ------| CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi, TSr})
                    | (Packet #3)
                   ->| CREATE_CHILD_SA response (HDR, SK {N(TS_UNACCEPTABLE)})
                    | (Judgment #3)
N: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below

IPv6 Header	Same as the	Common Packet #3
UDP Header	Same as the	Common Packet #3
IKEv2 Header	Same as the	Common Packet #3
E Payload	Same as the	Common Packet #3
IDi Payload	Same as the	Common Packet #3
AUTH Payload	Same as the	Common Packet #3
N Payload	Same as the	Common Packet #3
SA Payload	Same as the	Common Packet #3
TSi Payload	Other fields are same as the Common Packet #3	
	Traffic Selectors See belo	
TSr Payload	Other fields are same as the Common Packet #3	
	Traffic Selectors See below	

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #7	
UDP Header	Same as the	Common Packet #7	
IKEv2 Header	Same as the	Common Packet #7	
E Payload	Same as the	Common Packet #7	
N Payload	Same as the	Common Packet #7	
SA Payload	Same as the Common Packet #7		
Ni, Nr Payload	Same as the Common Packet #7		
TSi Payload	Other fields are same as the Common Packet #7		
	Traffic Selectors See belo		
TSr Payload	Other fields are same as the Common Packet #7		
	Traffic Selectors	See below	

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

Part A (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request including ICMPv6 (58) as IP Protocol ID value in Traffic Selector Payload to create new CHILD_SA.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including a Notify payload of type TS_UNACCEPTABLE.

Possible Problems:

Test IKEv2.EN.R.1.1.7.3: Narrowing Traffic Selectors from multiple Traffic Selector

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

- [RFC4306] Section 2.8
- [RFC4718] Section 4.10

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

	Traffic Selector					
	Source			Destination		
	Address	Next Layer	Port	Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1	TCP	ANY	NUT	TCP	ANY
Outbound	NUT	TCP	ANY	TN1	TCP	ANY

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

		TOROW
NUT	TN1	
(End-Node)	(End-Noc	de)
<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Packet #1)
	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
!		(Judgment #1)
!	ļ	
<		IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
!	!	(Packet #2)
	>	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
		(Judgment #2)
	l I	IPsec {TCP SYN}
		(Packet #3)
		IPsec {TCP RST}
		(Judgment #3)
l ;	i	(dudgmont no)
		<pre>IPsec {ICMPv6 Echo Request}</pre>
l i	i	(Packet #4)
i	х і	IPsec {ICMPv6 Echo Reply}
l i	į	(Judgment #4)
İ	į	
V	V	
N: USE_TRANS	PORT_MODE	
·	·	·

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #3
UDP Header	Same as the	Common Packet #3
IKEv2 Header	Same as the	Common Packet #3
E Payload	Same as the	Common Packet #3
IDi Payload	Same as the	Common Packet #3
AUTH Payload	Same as the	Common Packet #3
N Payload	Same as the	Common Packet #3
SA Payload	Same as the	Common Packet #3
TSi Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors See below	
TSr Payload	Other fields are same as the Common Packet #3	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X

Ending Address TN1's Global Add

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• Packet #3: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The cryptographic checksum of the entire message
TCP Header	Source Port	500
	Destination Port	500
	Flags	SYN (0x02)

Part A (BASIC)

- 1. TN1 sends an IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 sends an IKE_AUTH request to the NUT. The message includes two Traffice Selectors. One is set to 6 (TCP) as IP Protocol. Another is set to 58 (IPV6-ICMP).
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port on NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH response including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. The Traffic Selector Payload has one Traffic Selector with IP Protocol 6 (TCP) to narrow the proposed Traffic Selectors.

Step 6: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT never transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

Group 1.8. Error Handling

Test IKEv2.EN.R.1.1.8.1: INVALID_IKE_SPI

This test case was deleted at revision 1.1.0.

Test IKEv2.EN.R.1.1.8.2: INVALID_SYNTAX

This test case was deleted at revision 1.1.0.

Test IKEv2.EN.R.1.1.8.3: INVALID_SELECTORS

This test case was deleted at revision 1.1.0.

Group 1.10. Authentication of the IKE_SA

Test IKEv2.EN.R.1.1.10.1: Sending Certificate Payload

Purpose:

To verify an IKEv2 device handles a CERTREQ payload and transmits a CERT payload propoerly.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Local	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	NUT's global address on Link A
	Part B	X.509 Certificate - Signature	ID_FQDN	nut.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	nut@example.com

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
Packet #2	See below	

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #3

IKEv2 Header Same as the E Payload Same as the IDi Payload Next Payload	Common Packet #3 Common Packet #3 Common Packet #3 38 (CERTREQ)		
E Payload Same as the IDi Payload Next Payload	Common Packet #3		
IDi Payload Next Payload			
	38 (CERTREQ)		
Oter fields are same as the			
Otel fields are same as the	Common Packet #3		
CERTREQ Payload	See below		
AUTH Payload Same as the	Same as the Common Packet #3		
N Payload Same as the	Common Packet #3		
SA Payload Same as the	Common Packet #3		
TSi Payload Same as the	Common Packet #3		
TSr Payload Same as the	Common Packet #3		

CERTREQ Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Authority	any

Part A: ID_IPV6_ADDR (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERTREQ payload to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: ID_FQDN (ADVANCED)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERTREQ payload to the NUT.
- 8. Observe the messages transmitted on Link A.

Part A: ID_RFC822_ADDR (ADVANCED)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERTREQ payload to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response. The response includes an ID payload with ID_IPV6_ADDR and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response. The response includes an ID payload with ID_FQDN and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Part B

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response. The response includes an ID payload with ID_RFC822_ADDR and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.10.2: Sending Certificate Request Payload

Purpose:

To verify an IKEv2 device properly transmits CERTREQ payload.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Remote	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	TN1's global address on Link A
	Part B	X.509 Certificate - Signature	ID_FQDN	tn.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	tn@example.com

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: ID_IPV6_ADDR (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Part B: ID_FQDN (ADVANCED)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 4. Observe the messages transmitted on Link A.

Part C: ID_RFC822_ADDR (ADVANCED)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Possible Problems:

Test IKEv2.EN.R.1.1.10.3: RSA Digital Signature

Purpose:

To verify an IKEv2 device authenticates the corresponding node by RSA Digital Signature.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Domete	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	TN1's global address on Link A
Remote	Part B	X.509 Certificate - Signature	ID_FQDN	tn.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	tn@example.com

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

AU IT	THA
NUT	TN1
(End-Node)	(End-Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr, CERTREQ)
	(Judgment #1)
İ	
<	IKE_AUTH request (HDR, SK {IDi, CERT, AUTH, N, SAi2, TSi, TSr})
i	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
i	(Judgment #2)
i i	(00090)
	IPsec {Echo Request}
	(Packet #3)
l I	
	> IPsec {Echo Reply}
l l	(Judgment #3)
V	V
	ADT 1/ADT
N: USE_TRANSPO	ORT_MODE

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Con	nmon Packet #3
UDP Header	Same as the Con	nmon Packet #3
IKEv2 Header	Same as the Con	nmon Packet #3
E Payload	Same as the Con	nmon Packet #3
IDi Payload	Next Payload	37 (CERT)
	Oter fields are same as the Con	nmon Packet #3
CERT Payload		See below
AUTH Payload	Same as the Con	nmon Packet #3
N Payload	Same as the Con	nmon Packet #3
SA Payload	Same as the Con	nmon Packet #3
TSi Payload	Same as the Con	nmon Packet #3
TSr Payload	Same as the Con	nmon Packet #3

CERT Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Data	any

Part A: ID_IPV6_ADDR (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with an IDi payload as described above and a CERT payload to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.

Part B: ID_FQDN (ADVANCED)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with an IDi payload as described above and a CERT payload to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 12. Observe the messages transmitted on Link A.

Part C: ID_RFC822_ADDR (ADVANCED)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with an IDi payload as described above and a CERT payload to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None.

Test IKEv2.EN.R.1.1.10.4: HEX string PSK

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key.

References:

• [RFC 4306] - Sections 2.15

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Key Value
Local	0xabadcafeabadcafeabadcafeabadcafe (128 bit binary string)

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #2	See Common Packet #3

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Group 1.11 Invalid Values

Test IKEv2.EN.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	All RESERVED fields are set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.11.2: Non zero RESERVED fields in IKE_AUTH request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
	All RESERVED fields are set to one.

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.11.3: Version bit is set

Purpose:

To verify an IKEv2 device ignores the content of Version bit in IKE messages.

References:

• [RFC 4306] - Sections 3.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	Version bit is set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request whose Version bit is set to one.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

Test IKEv2.EN.R.1.1.11.4: Response bit is set

Purpose:

To verify an IKEv2 device ignores an IKE request message whose Response bit is set.

References:

• [RFC 4306] - Sections 2.21

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	Response bit is set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request whose Response bit is set to one.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT never responds with an IKE_SA_INIT response to an IKE_SA_INIT request from the TN1.

Possible Problems:

Test IKEv2.EN.R.1.1.11.5: Unrecognized Notify Message Type

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type in IKE messages.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
(End-Node)
               (End-Node)
                 -- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #1)
             ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #1)
        ----- IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr, N+})
                  | (Packet #2)
            ----->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                   | (Judgment #2)
            -----| IPsec {Echo Request}
                  | (Packet #3)
             ---->| IPsec {Echo Reply}
                   | (Judgment #3)
N: USE TRANSPORT MODE
N+: Notify Payload with unrecognized Notify Message Type
```

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #19

Packet #2: IKE_AUTH request

IPv6 Header	All fields are same as Common Packet #3
UDP Header	All fields are same as Common Packet #3
IKEv2 Header	All fields are same as Common Packet #3
E Payload	All fields are same as Common Packet #3
IDi Payload	All fields are same as Common Packet #3
AUTH Payload	All fields are same as Common Packet #3
N Pavload	All fields are same as Common Packet #3

SA Payload	All fields are same as Common Packet #3			
TSi Payload	All fields are same as Common Packet #3			
TSr Paylaod	Next Payload 41 (Notify)			
	Other fields are same as Common Packet #3			
N Payload	Next Payload	0		
	Critical	0		
	Reserved			
	Payload Length 8			
	Procotol ID 0			
	SPI Size 0			
	Notify Message Type See each part description.			

Part A: Unrecognized Notify Message Type of error 16383 (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request with a Notify payload of unrecognized Notify Message Type value (16383) to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Unrecognized Notify Message Type of status 65535 (BASIC)

- 7. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request with a Notify payload of unrecognized Notify Message Type value (65535) to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

Group 2. The CREATE_CHILD_SA Exchange

Group 2.1. Header and Payload Formats

Test IKEv2.EN.R.1.2.1.1: Receipt of CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device transmits a CREATE_CHILD_SA response using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.3 and 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
>	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)</pre>
> 	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)</pre>
<	<pre>CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #3)</pre>
>	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Judgment #3)
, v	
N: REKEY_SA N+: USE_TRANSPORT_MOD	DE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #13

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 6. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE CHILD SA request to the NUT to rekey CHILD SAs.
- 12. Observe the messages transmitted on Link A.

Part D: Notify Payload (USE_TRANSPORT_MODE) Format (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 18. Observe the messages transmitted on Link A.

Part E: SA Payload Format (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE CHILD SA request to the NUT to rekey CHILD SAs.
- 24. Observe the messages transmitted on Link A.

Part F: Nonce Payload Format (BASIC)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 28. Observe the messages transmitted on Link A.
- 29. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 30. Observe the messages transmitted on Link A.

Part G: TSi Payload Format (BASIC)

- 31. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 32. Observe the messages transmitted on Link A.

- 33. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 34. Observe the messages transmitted on Link A.
- 35. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 36. Observe the messages transmitted on Link A.

Part H: TSr Payload Format (BASIC)

- 37. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 38. Observe the messages transmitted on Link A.
- 39. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 40. Observe the messages transmitted on Link A.
- 41. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 42. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted IKE Header containing following values:

Figure 70 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field is set to Encrypted Payload (46)

- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to CREATE_CHILD_SA (36).
- A Flags field is set to (00000100)2 = (4)10.
- A Message ID field is set to the same value as corresponding IKEv2 request message's Message ID.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Encrypted Payload containing following values:

Figure 71 Encrypted payload

- A Next Payload field is set to N Payload (41).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire

message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Notify Payload containing following values:

Figure 72 Notify Payload format

- A Next Payload field is set to SA Payload (33).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload. It is 8 bytes for USE_TRANSPORT_MODE.
- A Protocol ID field is set to undefined (0).
- A SPI Size field is set to zero.
- A Notify Message Type field is set to USE_TRANSPORT_MODE (16391)

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

			1		2		3		
	0 1 2 3	3 4 5 6	7 8 9 0	1 2 3	4 5 6 7 8 9 0 1 2	3 4 5 6	7 8 9 0 1		
	+-+-+- ! Next	44	+-+-+- !0!	+-+-+-+ 0	-+-+-+-+-+-+-+ ! Length	-+-+-+ 40	-+-+-+-+ - !		
	+-+-+-		+-+-+-		-+-+-+-+-+-+-+		-+-+-+-+		į
	!	0 ·+-+-+-	! +-+-+-+-	0 +-+-+-	! Length -+-+-+-+-+	36 -+-+-+	.+-+-+-+	 	
	! Number		! Prot		! SPI Size 4			İ	i
	+-+-+-+- ! SPI va		+-+-+-	+-+-+-+	-+-+-+-+-+-+-+	-+-+-+	-+-+-+-+ !	 	
	- +-+-+-	+-+-+-	+-+-+-	+-+-+-+	-+-+-+-+-+-+	-+-+-+	-+-+-+-+	İ	İ
 Transform		3	! 	0	! Length -+-+-+-+-+	8	!		 SA Payload
	! Type					3		Proposal	
 I	- +-+-+-+- !	·+-+-+ 3	+-+-+- !	+-+-+-+ 0	-+-+-+-+-+-+-+ ! Length	-+-+-+ 8	-+-+-+-+ !	 	
Transform	+-+-+-		+-+-+-	+-+-+-+	-+-+-+-+-+-+	-+-+-+	-+-+-+-+	İ	i
I	! Type	` '			! Transform ID		(SHA1) !		
 I		0	+-+- !	0	-+-+-+-+-+-+-+ ! Length	-+-+-+ 8	-+-+-+-+ !		
Transform				+-+-+-+	-+-+-+-+-+-+-+	-+-+-+		İ	İ
	! Type	5 (ESN	۱)!	0	! Transform ID	0	(No) !		

Figure 73 SA Payload contents

The NUT transmits a CREATE_CHILD_SA response including properly formatted SA Payload containing following values (refer following figures):

Figure 74 SA Payload format

- A Next Payload field is set to Nr Payload (40).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 75 Proposal sub-structure format

Proposal #1

- A 0 or 2 field is set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field is set to zero.
- A Proposal Length field is set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field is set to 1.
- A Protocol ID field is set to ESP (3).
- A SPI Size field is set to 4.
- A # of Transforms field is set to 3.
- A SPI field is set to the sending entity's SPI (4 octets value)

Transform field is set to following (There are 3 Transform Structures).

Figure 76 Transform sub-structure format

Transform #1

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field is set to ENCR (1).
- A RESERVED field is set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

• A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.

- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field is set to INTEG (3).
- A RESERVED field is set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field is set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field is set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field is set to ESN (5).
- A RESERVED field is set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part E

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 30: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Nonce Payload containing following values:

Figure 77 Nonce Payload format

- A Next Payload field is set to TSi Payload (44).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Nonce Data field is set to random data generated by the transmitting entity.
- The size of the Nonce must between 16 and 256 octets.

Part F

Step 32: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 34: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 36: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted TSi Payload containing following values:

Figure 78 TSi Payload format

- A Next Payload field is set to TSr Payload (45).
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 79 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header.

- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to TN1 address.
- A Ending Address field is set to TN1 address.

Part G

Step 38: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 40: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 42: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted TSr Payload containing following values:

Figure 80 TSr Payload format

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length of the current payload.
- A Number of TSs field is set to 1.
- A RESERVED field is set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 81 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field is set to zero.
- A Selector Length field is set to length of this Traffic Selector Substructure including the header.
- A Start Port field is set to zero.
- An End Port field is set to 65535.
- A Starting Address field is set to NUT address.
- An Ending Address field is set to NUT address.

Possible Problems:

CREATE_CHILD_SA response has following packet format. It may have additional
payloads described below. Additional payloads can be ignored by this test. The order of
payload may be different from this sample.

```
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, Nr, [KEr], TSi, TSr,
[N(ADDITIONAL_TS_POSSIBLE)]
```

• Each of transforms can be located in the any order.

Group 2.2. Use of Retransmission Timers

Test IKEv2.EN.R.1.2.2.1: Receipt of retransmitted CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device retransmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
į į	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
> 	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
i i	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)
	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)</pre>
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #3)
> 	CREATE_CHILD_SA response (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Judgment #3)
l '	wait until retrans timer expires CREATE_CHILD_SA response (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Judgment #4)
 < 	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #4)
>	CREATE_CHILD_SA response (HDR, SK {N, N+, SA, Nr, TSi, TSr}) (Judgment #5)
N: REKEY_SA N+: USE_TRANSPORT_MOD	E

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #13
Packet #4	See Common Packet #13

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to rekey the established CHILD_SAs to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 retransmits the same message as a CREATE_CHILD_SA request transmitted in Step 5 to the NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #4

The NUT never retransmits a CREATE_CHILD_SA response which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Step 9: Judgment #5

The NUT retransmits a CREATE_CHILD_SA response which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

none

Group 2.3. State Synchronization and Connection Timeouts

Test IKEv2.EN.R.1.2.3.1: Receiving Delete Payload for Multiple CHILD_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
j	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) > IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
 <	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
 < 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #3)
	> CREATE_CHILD_SA response (HDR, SK {N, SA, Nr, TSi, TSr}) (Judgment #3)
 <	INFORMATIONAL request (HDR, SK {D}) (Packet #4)
j	> INFORMATIONAL request (HDR, SK {D}) (Judgment #4)
i V	V V
N: USE_TRANSPOR	RT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common below
Packet #3	See Common below
Packet #4	See Common below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #3
UDP Header	Same as the	Common Packet #3
IKEv2 Header	Same as the	Common Packet #3
E Payload	Same as the	Common Packet #3
IDi Payload	Same as the	Common Packet #3
AUTH Payload	Same as the	Common Packet #3
N Payload	Same as the	Common Packet #3
SA Payload	Same as the	Common Packet #3
TSi Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #7
UDP Header	Same as the	Common Packet #7
IKEv2 Header	Same as the	Common Packet #7
E Payload	Same as the	Common Packet #7
N Payload	Same as the	Common Packet #7
SA Payload	Same as the	Common Packet #7
Ni, Nr Payload	Same as the	Common Packet #7
TSi Payload	Other fields are same as the	Common Packet #7
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Packet #7	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A

	Е	nding Address	NUT's Global Address on Link A

Packet #4: INFORMATIONAL request

	Ι		
IPv6 Header	Same as the Common Packet #17		
UDP Header	Same as the Common Packet #17		
IKEv2 Header		Same as the Common Packet #17	
E Payload		Other fields are same as the Common Packet #17	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved	0	
	Payload Length	16	
	Procotol ID	3 (ESP)	
	SPI Size	4	
	# of SPIs	2	
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange	
		SPI negotiated by CREATE_CHILD_SA exchange	

Part A: (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to establish a new CHILD_SA to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an INFORMATIONAL request with a Delete payload including the first negotiated CHILD_SA's inbound SPI and the second negotiated CHILD_SA's inbound SPI.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH response including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 8: Judgment #4

The NUT transmits an INFORMATIONAL response with delete payload for SPIs which are negotiated by Initial Exchange and CREATE_CHILD_SA exchange.

Possible Problems:

• INFORMATIONAL response from NUT may not contain Delete Payload by implementation policy. This behavior is defined at section 1.4 in RFC 4306 as an

exception.

Group 2.4. Cryptographic Algorithm Negotiation

Test IKEv2.EN.R.1.2.4.1: Sending NO_PROPOSAL_CHOSEN

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA request with an unacceptable SA payload.

References:

- [RFC 4306] Sections 2.7 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2)</pre>
>	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)</pre>
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #3)
x	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) or
>	<pre>CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}) (Judgment #3)</pre>
I I	
N: REKEY_SA	_
N+: USE_TRANSPORT_MOD	E

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #13	
UDP Header	Same as the Common Packet #13	
IKEv2 Header	Same as the Common Packet #13	
E Payload	Same as the Common Packet #13	
N Payload	Same as the Common Packet #13	
N Payload	Same as the Common Packet #13	
SA Payload	Other fields are same as the Common Packet #13	
	SA Proposals See below	
Ni, Nr Payload	Same as the Common Packet #13	
TSi Payload	Same as the Common Packet #13	
TSr Payload	Same as the Common Packet #13	

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length		36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	S	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	12 (AES_CBC)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	5 (AES_XCBC_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	1 (ESN)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to rekey the established CHILD_SAs to the NUT. The CREATE_CHILD_SA request includes a SA payload with a proposal unaccepted by the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmit a CREATE_CHILD_SA response or transmits a CREATE_CHILD_SA response including a Notify payload of type NO PROPOSAL CHOSEN.

Possible Problems:

None.

Group 2.5. Rekeying CHILD_SA Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.R.1.2.5.1: Close the replaced CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to rekey CHILD_SA and INFORMATIONAL Excannges to delete old CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN1	
(End-Node) (End-Node)	
< IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
(Packet #1)	
> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
(Judgment #1)	
IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, T	Sr})
(Packet #2)	
> IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi,	TSr})
(Judgment #2)	
< IPsec {Echo Request}	
(Packet #3)	
> IPsec {Echo Reply}	
(Judgment #3)	
< CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi,	TSr})
(Packet #4)	
> CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TS	ir})
(Judgment #4)	
< INFORMATIONAL request (HDR, SK {D})	
(Packet #5)	
> INFORMATIONAL response (HDR, SK {D})	
(Judgment #5)	
V	
N: REKEY_SA	
N+: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See Common Packet #13
Packet #5	See below

Packet #5: INFORMATIONAL request

IPv6 Header		Same as the Common Packet #17	
UDP Header	Same as the Common Packet #17		
IKEv2 Header		Same as the Common Packet #17	
E Payload	Other fields ar	e same as the Common Packet #17	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved	0	
	Payload Length	12	
	Procotol ID	3 (ESP)	
	SPI Size	4	
	# of SPIs	1	
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request including a Delete payload with the old CHILD_SA's SPI value to the NUT.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 10: Judgment #5

The NUT transmits an INFORMATIONAL response including a Delete payload with the old CHILD_SA's SPI value to the TN1.

Possible Problems:

Test IKEv2.EN.R.1.2.5.2: Use of the new CHILD_SA

Purpose:

To verify an IKEv2 device properly handle old CHILD_SA and new CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
- In each part, configure the devices according to the Common Configuration.Pre-Sequence and Cleanup Sequence
- IKEv2 on the NUT is disabled after each part.

NUT TN1
(Find Mode) (Find Mode)
(End-Node) (End-Node)
 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr} (Judgment #2)
 IPsec {Echo Request}
> IPsec {Echo Reply} (Judgment #3)
CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr} (Packet #4)
> CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Judgment #4)
 INFORMATIONAL request (HDR, SK {D}) (Packet #5)
> INFORMATIONAL response (HDR, SK {D}) (Judgment #5)
IPsec {Echo Request} (new SA) (Packet #6)
IPsec {Echo Reply} (new SA)
(Judgment #6)
V
N: REKEY_SA
N+: USE_TRANSPORT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
	(CHILD_SA is negotiated by steps 1 through 4.)
Packet #4	See Common Packet #13
Packet #5	See below
Packet #6	See Common Packet #19
	(CHILD_SA is negotiated by steps 7 through 8.)

Packet #5: INFORMATIONAL request

IPv6 Header		Same as the Common Packet #17	
UDP Header	Same as the Common Packet #17		
IKEv2 Header		Same as the Common Packet #17	
E Payload	Other fields ar	e same as the Common Packet #17	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved	0	
	Payload Length	12	
	Procotol ID	3 (ESP)	
	SPI Size	4	
	# of SPIs	1	
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request including a Delete payload with the old CHILD_SA's SPI value to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 10: Judgment #5

The NUT transmits an INFORMATIONAL response including a Delete payload with the old CHILD_SA's SPI value to the TN1.

Step 12: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the newly negotiated algorithms.

Possible Problems:

Test IKEv2.EN.R.1.2.5.3: Receiving Multiple Transform

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
. '	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
	(Packet #2)
	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
l i i	(Judgment #2)
l i i	
<	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
	(Packet #3)
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
	(Judgment #3)
\ \ \ \	
N: REKEY_SA	
_	AC
N+: USE_TRANSPORT_MOD	'L

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

From part A to part C, TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the transforms as follows:

CREATE_CHILD_SA exchanges Algorithms		
Encryption	Integrity	ESN
ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
	Encryption	Encryption Integrity ENCR_3DES ALITH HMAC SHA1 96

Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	e Common Packet #13
UDP Header	Same as the	e Common Packet #13
IKEv2 Header	Same as the	e Common Packet #13
E Payload	Same as the	e Common Packet #13
IDi Payload	Same as the	e Common Packet #13
AUTH Payload	Same as the	e Common Packet #13
N Payload	Same as the	e Common Packet #13
N Payload	Same as the	e Common Packet #13
SA Payload	Other fields are same as the	e Common Packet #13
	SA Proposals	See below
TSi Payload	Same as the	Common Packet #13
TSr Payload	Same as the	Common Packet #13

Proposal #1	SA Proposal	Next Payload		0 (last)
	Reserved		0	
	Proposal Length		40	
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms SPI		4
				Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE CHILD SA response including "ENCR 3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.R.1.2.5.4: Receiving Multiple Proposal

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(End-Node) (End-	Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
. '	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})
	(Packet #2)
	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})
l i i	(Judgment #2)
l i i	
<	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr})
	(Packet #3)
	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr})
	(Judgment #3)
\ \ \ \	
N: REKEY_SA	
_	AC
N+: USE_TRANSPORT_MOD	'L

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the two proposals as follows:

	CREATE_CHILD_SA exchanges Algorithms				
	Proposal	Protocol ID	Encryption	Integrity	ESN
Part A	Proposal #1	ESP	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
rart A	Proposal #2	FSP	ENCR 3DES	AUTH HMAC SHA1 96	No ESN

Part B	Proposal #1	ESP	ENCR_3DES	AUTH_AES_XCBC_96	No ESN
rartb	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part C	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN
rart	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #13	
UDP Header	Same as the Common Packet #13	
IKEv2 Header	Same as the	Common Packet #13
E Payload	Same as the	Common Packet #13
IDi Payload	Same as the	Common Packet #13
AUTH Payload	Same as the	Common Packet #13
N Payload	Same as the Common Packet #13	
N Payload	Same as the Common Packet #13	
SA Payload	Other fields are same as the Common Packet #13	
	SA Proposals	See below
TSi Payload	Same as the Common Packet #13	
TSr Payload	Same as the Common Packet #13	

Proposal #1	SA Proposal	Next Payload		2 (more)
T Topoda #1	o, triopodui	Reserved		0
		Proposal Length		40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	2	4
		SPI	,	Any
		SA Transform	Next Payload	3 (more)
		, , , , , , , , , , , , , , , , , , ,	Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
		G/ 1 1 minor of 1111	Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengt	h	40
		Proposal #		2
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)

	0		- A	
(1		7		
	F	ORI	IIM	

	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.R.1.2.5.5: Perfect Forward Secrecy

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA exchange when Perfect Forward Secrecy enabels.

References:

• [RFC 4306] - Sections 2.12

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. Enable
 PES
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

	FORUM	
NUT TN	11	
(End-Node) (End-	Node)	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
	(Packet #1)	
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
	(Judgment #1)	
l '	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr})</pre>	
	(Packet #2)	
	IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr})	
	(Judgment #2)	
	IDaga (Fala Dagasa)	
1 '	IPsec {Echo Request}	
	(Packet #3)	
1	IPsec {Echo Reply}	
	(Judgment #3)	
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, KEi, TSi, TSr})	
	(Packet #4)	
l '	CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, KEr, TSi, TSr})	
1	(Judgment #4)	
i	(**************************************	
<	INFORMATIONAL request (HDR, SK {D})	
	(Packet #5)	
>	INFORMATIONAL response (HDR, SK {D})	
	(Judgment #5)	
1 '	IPsec {Echo Request} (new SA)	
l '	(Packet #6)	
1 '	IPsec {Echo Reply} (new SA)	
l l	(Judgment #6)	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
N: REKEY_SA		
N+: USE_TRANSPORT_MODE		
III. OCL_ITATIOI OITI_MODE		

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #3	
Packet #3	See Common Packet #19	
	(CHILD_SA is negotiated by steps 1 through 4.)	
Packet #4	See below	
Packet #5	See below	
Packet #6	See Common Packet #19	
	(CHILD_SA is negotiated by steps 7 through 8.)	

Packet #4: CREATE_CHILD_SA response

IPv6 Header	Same as the Common	Packet #13
UDP Header	Same as the Common	Packet #13
IKEv2 Header	Same as the Common	Packet #13
E Payload	Same as the Common	Packet #13
N Payload	Same as the Common	Packet #13
N Payload	Same as the Common	Packet #13
SA Payload	Same as the Common	Packet #13
Ni Payload	Next Payload	34 (KE)
KEi Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0

	Key Exchange Data	any
TSi Payload	Same as the Common	Packet #13
TSr Payload	Same as the Common	Packet #13

Packet #5: INFORMATIONAL request

IPv6 Header	Same as the Common Packet #17	
UDP Header		Same as the Common Packet #17
IKEv2 Header		Same as the Common Packet #17
E Payload	Other fields	are same as the Common Packet #17
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request including a Delete payload with the old CHILD SA's SPI value to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an Echo Request with IPsec ESP using the second negotiated algorithms to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 10: Judgment #5

The NUT transmits an INFORMATIONAL response including a Delete payload with the old CHILD_SA's SPI value to the TN1.

Step 12: Judgment #6

The NUT transmits an Echo Reply with IPsec ESP using the newly negotiated algorithms.

Possible Problems:

Test IKEv2.EN.R.1.2.5.6: Use of the old CHILD_SA

Purpose:

To verify an IKEv2 device properly handle old CHILD_SA and new CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

NUT TN	1
(End-Node) (End-	Node)
	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
>	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N+, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N+, SAr2, TSi, TSr}) (Judgment #2)</pre>
i i	<pre>IPsec {Echo Request} (Packet #3) IPsec {Echo Reply} (Judgment #3)</pre>
	CREATE_CHILD_SA request (HDR, SK {N, N+, SA, Ni, TSi, TSr}) (Packet #4) CREATE_CHILD_SA response (HDR, SK {N+, SA, Nr, TSi, TSr}) (Judgment #4)
i i	,
N: REKEY_SA N+: USE_TRANSPORT_MOD	E

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #3	
Packet #3	See Common Packet #19	
	(CHILD SA is negotiated by steps 1 through 4.)	

Packet #4	See Common Packet #13
Packet #5	See Common Packet #19
	(CHILD_SA is negotiated by steps 1 through 4.)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms again.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 10: Judgment #5

The NUT transmits an Echo Reply with IPsec ESP. The NUT can use both the first CHILD_SA and the new CHILD_SA.

Possible Problems:

Group 2.6. Rekeying IKE_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.R.1.2.6.1: Sending CREATE_CHILD_SA response

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA Excahnge to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8 and 2.18

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	11
(End-Node) (End-	Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
į į	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
į į	(Judgment #1)
j	
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
j	(Packet #2)
>	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})</pre>
į į	(Judgment #2)
j	
<	IPsec {Echo Request}
į į	(Packet #3)
>	IPsec {Echo Reply}
j	(Judgment #3)
į į	
<	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
	(Packet #4)
>	CREATE_CHILD_SA response (HDR, SK {SA, Nr})
	(Judgment #4)
V	
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA's initiator's SPI value.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.EN.R.1.2.6.2: Receipt of cryptographically valid message on the old SA

Purpose:

To verify an IKEv2 device properly uses old IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT	TN1
(End-Node) (E	ind-Node)
 < 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
	IPsec {Echo Request} (Packet #3)
	-> IPsec {Echo Reply} (Judgment #3)
	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
	> CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #4)
	INFORMATIONAL request (HDR, SK {}) (old IKE_SA) (Packet #5)
	-> INFORMATIONAL response (HDR, SK {}) (old IKE_SA) (Judgment #5)
V	V
N: USE_TRANSPORT_N	IODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19

Packet #4 See Common Packet #11		See Common Packet #11		
		See Common Packet #17		
	Packet #5	(CHILD_SA is negotiated by steps 1 through 4.)		

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request with no payloads protected by the old IKE SA.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Step 10: Judgment #5

The NUT responds with an INFORMATIONAL response with no payloads protected by the old IKE_SA.

Possible Problems:

Test IKEv2.EN.R.1.2.6.3: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly uses new IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT	TN1	
(End-Node)	(End-Node)	
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)	
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)	
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})	
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)	
	 IPsec {Echo Request} (Packet #3)	
	> IPsec {Echo Reply} (Judgment #3)	
	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #4)	
	> CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #4)	
	INFORMATIONAL request (HDR, SK {}) (Packet #5)	
	> INFORMATIONAL response (HDR, SK {}) (Judgment #5)	
V	V	
N: USE_TRANSPORT_MODE		

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19

Packet #4	See Common Packet #11
Packet #5	See Common Packet #17

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request with no payloads protected by the new IKE SA and the Message ID field in the IKE header is zero.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Step 10: Judgment #5

The NUT responds with an INFORMATIONAL response with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.

Possible Problems:

Test IKEv2.EN.R.1.2.6.4: Close the replaced IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.8 and 5.11

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

NUT TN	11
(End-Node) (End-	Node)
>	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)</pre>
>	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
'	<pre>IPsec {Echo Request} (Packet #3)</pre>
	<pre>IPsec {Echo Reply} (Judgment #3)</pre>
	<pre>CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #4)</pre>
	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #4)
'	<pre>INFORMATIONAL request (HDR, SK {D}) (Packet #5)</pre>
	<pre>INFORMATIONAL response (HDR, SK {}) (Judgment #5)</pre>
'	<pre>IPsec {Echo Request} (Packet #6)</pre>
'	<pre>IPsec {Echo Reply} (Judgment #6)</pre>
N: USE_TRANSPORT_MODE	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See Common Packet #11
Packet #5	See below
Packet #6	See Common Packet #19

Packet #5: INFORMATIONAL request

IPv6 Header	Same as the Commo	n Packet #17	
UDP Header	Same as the Common Packet #17		
IKEv2 Header	Same as the Common Packet #17		
E Payload Other fields are same as the Commo		n Packet #17	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved		
	Payload Length	16	
	Procotol ID	1 (IKE_SA)	
	SPI Size	0	
	# of SPIs	0	
	Security Parameter Index(es) (SPI)	empty	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA to the NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request with a Delete payload which has 1 (IKE_SA) in the Protocol ID field, zero in the SPI Size field and zero in the # of SPIs field.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Step 10: Judgment #5

The NUT responds with an INFORMATIONAL response with no payloads.

Step 12: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.

Possible Problems:

none.

Test IKEv2.EN.R.1.2.6.5: Receiving Multiple Transform

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transform to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
ĺ	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
ĺ	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
	(Judgment #2)
<	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
	(Packet #3)
	> CREATE_CHILD_SA response (HDR, SK {SA, Nr })
	(Judgment #3)
V	V
N: USE_TRANSP	ORT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the transforms as follows:

	IKE_SA_INIT exchanges Algorithms				
	Encryption	PRF	Integrity	D-H Group	
Part A	ENCR_AES_CBC ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part B	ENCR_3DES	PRF_AES128_CBC PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	

Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 or Group 24, Group 2

• Packet #3 CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #11		
UDP Header	Same as the Common Packet #11		
IKEv2 Header	Same as the Common Packet #11		
SA Payload	Other fields are same as the common packet #11		
	SA Proposals See SA Table below		
Ni, Nr Payload	Same as the Common Packet #11		

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length		44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	S	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	2 (HMAC_SHA1)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	2 (1024 MODP Group)
	1		L	,

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type

REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.

6. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo Random Function (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithm (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Multiple D-H Group (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2"as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.R.1.2.6.6: Receiving Multiple Proposal

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple proposal to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TI	11
(End-Node) (End-	Node)
į	<pre>IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
j	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
 < 	<pre>CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #3)</pre>
> V	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #3)
N: USE_TRANSPORT_MODE	<u>:</u>

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the two proposals as follows:

	IKE_SA_INIT exchanges Algorithms					
	Proposals	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part A	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2

Part B	Proposal #1	IKE	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Fartb	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Fart C	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part D	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 or Group 24
	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #11		
UDP Header	Same as the Common Packet #11		
IKEv2 Header	Same as the Common Packet #11		
SA Payload	Other fields are same as the common packet #11		
	SA Proposals See SA Table below		
Ni, Nr Payload	Same as the Common Packet #11		

Proposal #1	SA Proposal	Next Payload Reserved Proposal Length Proposal # Protocol ID		2 (more)
				0
				44
				1
				1 (IKE)
		SPI Size		0
		# of Transforms	5	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length	n	44
		Proposal #		2
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	3	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0

				100
	6		-	
(I		(J	
	F	OR	IIIV	,

		Transform ID	3 (3DES)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	2 (PRF)
		Reserved	0
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo Rnadom Function (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Multiple D-H Group (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.

- 23. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

Test IKEv2.EN.R.1.2.6.7: Changing PRFs when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly uses new IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration
 In each part, configure the devices according to the Common Configuration.
 Configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA Rekeying Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_3DES	PRF_AES128_XCBC	AUTH_HMAC_SHA1_96	Group 2

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

```
TN1
  NUT
(End-Node)
                (End-Node)
                   | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
               ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #1)
          ----- | IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                   | (Packet #2)
             ---->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                   | (Judgment #2)
               ----| CREATE_CHILD_SA request (HDR, SK {SA, Ni})
                   | (Packet #3)
            ---->| CREATE_CHILD_SA response (HDR, SK {SA, Nr})
                   | (Judgment #3)
         ----- INFORMATIONAL request (HDR, SK {})
                     (Packet #4)
                  ->| INFORMATIONAL response (HDR, SK {})
                   | (Judgment #4)
N: USE_TRANSPORT_MODE
```

Packet #1 See Common Packet #1

	1 0110111
Packet #2	See Common Packet #3
Packet #3	Seebelow
Packet #4	See Common Packet #17

Packet #3: CREATE_CHILD_SA request

Packet #3 is same as Common Packet #11 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type PRF is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	4 (PRF_AES128_XCBC)

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an INFORMATIONAL request with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 14" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's responder's SPI value in the SPI field.

Step 8: Judgment #4

The NUT responds with an INFORMATIONAL response with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.

Possible Problems:

none

Test IKEv2.EN.R.1.2.6.8: D-H transform NONE when rekeying the IKE_SA

This test case was deleted at revision 1.1.0.

Test IKEv2.EN.R.1.2.6.9: Rekeying Failure

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA request with an unacceptable SA payload.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
	CREATE_CHILD_SA request (HDR, SK {SA, Ni, KE}) (Packet #3)
 	> CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}) (Judgment #3)
V	l V
N: USE_TRANSPO	ORT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #13
UDP Header	Same as the Common Packet #13
IKEv2 Header	Same as the Common Packet #13
E Payload	Same as the Common Packet #13
N Payload	Same as the Common Packet #13
N Payload	Same as the Common Packet #13

1 OKOM		
SA Payload	Other fields are same as the Common Packet #13	
	SA Proposals	See below
Ni, Nr Payload	Same as the	e Common Packet #13
TSi Payload	Same as the	e Common Packet #13
TSr Payload	Same as the	e Common Packet #13

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengtl	n	36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	12 (AES_CBC)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	4 (AES128_XCBC_96)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	5 (AES_XCBC_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	1 (ESN)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to rekey the established IKE_SA to the NUT. The CREATE_CHILD_SA request includes a SA payload with a proposal unaccepted by the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including a Notify payload of type NO_PROPOSAL_CHOSEN.

Possible Problems:

• None.

Group 2.7. Creating new CHILD_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.EN.R.1.2.7.1: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to create a new CHILD_SA.

References:

• [RFC 4306] - Sections 2.8 and 2.18

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM	
NUT TN	N1	
(End-Node) (End-	Node)	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
	(Packet #1)	
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
	(Judgment #1)	
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})	
	(Packet #2)	
	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})	
	(Judgment #2)	
! !	(700,004)	
· '	IPsec {TCP-SYN}	
1	(Packet #3)	
1	IPsec {TCP-RST}	
	(Judgment #3)	
	IPsec {Echo Request}	
	(Packet #4)	
	IPsec {Echo Reply}	
	(Judgment #4)	
l i i	(oddgiiont ii i)	
	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})	
1	(Packet #5)	
>	CREATE_CHILD_SA response (HDR, SK {N, SA, Nr, TSi, TSr})	
l i i	(Judgment #5)	
<	IPsec {TCP-SYN}	
	(Packet #6)	
1	IPsec {TCP-RST}	
	(Judgment #6)	
! !		
1	IPsec {Echo Request}	
	(Packet #7)	
	IPsec {Echo Reply}	
	(Judgment #7)	
V		
N: USE_TRANSPORT_MODE		
1 30=	-	

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #19
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #3
UDP Header	Same as the Common Packet #3
IKEv2 Header	Same as the Common Packet #3
E Payload	Same as the Common Packet #3
IDi Payload	Same as the Common Packet #3
AUTH Payload	Same as the Common Packet #3
N Payload	Same as the Common Packet #3
SA Payload	Same as the Common Packet #3

TSi Payload	Other fields are same as the Common Packet #3	
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #3
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link A
		Ending Address	TN1's Global Address on Link A

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link X
		Ending Address	NUT's Global Address on Link X

• Packet #3: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
TCP Header	Source Port	30000
	Destination Port	30000
	Flags	SYN (0x02)

• Packet #5: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #7
UDP Header	Same as the	Common Packet #7
IKEv2 Header	Same as the	Common Packet #7
E Payload	Same as the	Common Packet #7
IDi Payload	Same as the	Common Packet #7
AUTH Payload	Same as the	Common Packet #7
N Payload	Same as the	Common Packet #7
SA Payload	Same as the	Common Packet #7
TSi Payload	Other fields are same as the	Common Packet #7
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #7
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TN1's Global Address on Link X
		Ending Address	TN1's Global Address on Link X

1 Oltoni			
		IP Protocol ID	58 (IPV6-ICMP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	NUT's Global Address on Link A
		Ending Address	NUT's Global Address on Link A

• Packet #6: TCP SYN packet

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	6 (TCP)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
TCP Header	Source Port	30000
	Destination Port	30000
	Flags	SYN (0x02)

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port 30000 on NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a TCP-SYN packet with IPsec ESP using corresponding algorithms to closed port 30000 on NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT never transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT transmits a TCP-RST packet with IPsec ESP using corresponding algorithms.

Step 14: Judgment #7

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• If the NUT uses TCP port 30000 for other applications, the TN1 transmits TCP-SYN packets to other closed TCP port on the NUT.

Group 2.8. Error Handling

Test IKEv2.EN.R.1.2.8.1: AUTHENTICATION_FAILED

This test case was deleted at revision 1.1.0.

Group 2.9. Non zero RESERVED fields

Test IKEv2.EN.R.1.2.9.1: Non zero RESERVED fields in CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #13
	All RESERVED fields are set to one.

Part A: (BASIC)

1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

none

Group 3. The INFORMATIONAL Exchange

Group 3.1. Header and Payload Formats

Test IKEv2.EN.R.1.3.1.1: Sending INFORMATIONAL response

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.1.2, 1.4, 3.1 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                   TN1
(End-Node)
                (End-Node)
                   -| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                    | (Packet #1)
                   >| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                    | (Judgment #1)
              ----- IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                    | (Packet #2)
           ----->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                    | (Judgment #2)
           ----- INFORMATIONAL request (HDR, SK { })
                   | (Packet #3)
              ---->| INFORMATIONAL response (HDR, SK { })
                   | (Judgment #3)
N: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #17

Part A: IKE Header Format (BASIC)

1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT_SA response from the NUT, TN1 transmits an IKE AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT_SA response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response including properly formatted IKE Header containing following values:

Figure 82 Header format

- An IKE_SA Initiator's SPI field is set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field is set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.

- A Next Payload field is set to Encrypted Payload (46).
- A Major Version field is set to 2.
- A Minor Version field is set to zero.
- An Exchange Type field is set to INFORMATIONAL (37).
- A Flags field is set to (00000100)2 = (4)10.
- A Message ID field is set to the same value as corresponding IKEv2 request message's Message ID.
- A Length field is set to the length of the message (header + payloads) in octets.

Part B

Step 9: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 11: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #3

The NUT transmits an INFORMATIONAL response including properly formatted Encrypted Payload containing following values:

Figure 83 Encrypted payload

- A Next Payload field is set to zero.
- A Critical field is set to zero.
- A RESERVED field is set to zero.
- A Payload Length field is set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field is set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field is set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field is set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field is set to the length of the Padding field.

• An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Possible Problems:

• None.

Group 3.2. Use of Retransmission Timers

Test IKEv2.EN.R.1.3.2.1: Receipt of retransmitted INFORMATIONAL request

Purpose:

To verify an IKEv2 device properly handles the retransmission.

References:

• [RFC 4306] - Sections 1.1.2, 1.4 and 2.1

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) > IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1) (JKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
	(Packet #2)> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
i	 INFORMATIONAL request (HDR, SK { }) (Packet #3)
	> INFORMATIONAL response (HDR, SK { }) (Judgment #3) * wait until retrans timer expires
	> INFORMATIONAL response (HDR, SK { }) (Judgment #4)
<	INFORMATIONAL request (HDR, SK { }) (Packet #4)
	> INFORMATIONAL response (HDR, SK { }) (Judgment #5)
V V	l V
N: USE_TRANSP	ORT_MODE

Packet #1	See Common Packet #1
-----------	----------------------

Packet #2	See Common Packet #3
Packet #3	See Common Packet #17
Packet #4	See Common Packet #17
	(same Message ID as packet #3)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an INFORMATIONAL request with no payloads. The Message ID is the same as step 5.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH response including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Step 7: Judgment #4

The NUT never retransmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #5

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

none

Group 3.3. Non zero RESERVED fields

Test IKEv2.EN.R.1.3.3.1: Non RESERVED fields in INFORMATIONAL request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN1 (End-Node) (End-Node)
(Packet #1)
(Packet #1)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(Judgment #1)
<pre> < IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}</pre>
(Packet #2)
IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr
(Judgment #2)
< INFORMATIONAL request (HDR, SK {})
(Packet #3)
ÎNFORMATIONAL response (HDR, SK {})
(Judgment #3)
, v
N: USE_TRANSPORT_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #17
	All RESERVED fields are set to one.

Part A: (BASIC)

1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.

- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads. All RESERVED fields in the message are set to one.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

• None

Group 4. RFC 5996

Group 4.1. Rekeying IKE SAs Using a CREATE_HLD_SA Exchange

[EN.R.P29.L2503.ADD] Test IKEv2.EN.R.1.4.1.1.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 5996] - Section 2.18

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node)	(End-Node)
	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1) > IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
	IPsec {Echo Request} (Packet #3)
	> IPsec {Echo Reply} (Judgment #3)
	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #4)
	> CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}) (Judgment #4)
l l	l V
N: USE_TRANSPORT_	_MODE

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3

Packet #3	See Common Packet #19
Packet #4	See Common Packet #11

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.Observe the messages transmitted on Link A.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA's initiator's SPI value. The proposal has the value "NONE" for the Diffie-Hellman transform.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response with Notify payload of type NO PROPOSAL CHOSEN.

Possible Problems:

[EN.R.P86.L4030.ADD.1] Test IKEv2.EN.R.1.4.1.2.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can handle a proposal that contains a Transform Type it does not understand

References:

• [RFC 5996] - Section 3.3.6

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #1	IKE_SA_INIT request has 2 SA Proposals.

Part A: (BASIC)

- TN1 starts to negotiate with NUT by sending IKE_SA_INIT request. The request has 2 proposals. One proposal has 5 Transforms which are "a Transform Type (240)", "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", and "D-H Group 2". Another proposal has 4 Transforms which are "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", and "D-H Group 2".
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

[EN.R.P86.L4030.ADD.2] Test IKEv2.EN.R.1.4.1.3.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can handle a proposal that is missing a mandatory Transform Type

References:

• [RFC 5996] - Section 3.3.6

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #1	IKE_SA_INIT request has 2 SA Proposals.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request. The request has 2 proposals. One proposal has 3 Transforms which "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", and "D-H Group 2". Another proposal has 4 Transforms which are "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", and "D-H Group 2".
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

[EN.R.P86.L4034.ADD.1] Test IKEv2.EN.R.1.4.1.4.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can handle a transform that it does not understand

References:

• [RFC 5996] - Section 3.3.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #1	IKE_SA_INIT request has 5 SA Transforms.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request. The request has 5 Transforms which are "1 (ENCR) as Transform Type and 1023 as Transform ID", "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2".
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

[EN.R.P86.L4034.ADD.2] Test IKEv2.EN.R.1.4.1.5.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can handle a Transform Attribute it does not understand

References:

• [RFC 5996] - Section 3.3.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packt #1
Packet #1	IKE_SA_INIT request has 5 SA Transforms.

Part A: (BASIC)

- TN1 starts to negotiate with NUT by sending IKE_SA_INIT request. The request has 5
 Transforms which are "ENCR_3DES with Transform Attribute of type KeyLength and
 value 192", "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H
 Group 2"
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

[EN.R.P57.L2663.ADD] Test IKEv2.EN.R.1.4.1.6.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can notify AUTHENTICATION_FAILED

References:

• [RFC 5996] - Section 2.21.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
	See Common Packet #3
Packet #2	Authentication Data is 0x0123456789abcdef0123456789abcdef01234567.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT. The response includes invalid Authentication Data 0x0123456789abcdef0123456789abcdef01234567.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including Notify payload of type AUTHENTICATION_FAILED.

Possible Problems:

[EN.R.P69.L3234.ADD] Test IKEv2.EN.R.1.4.1.7.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can process CHILD_CHILD_SA request to close a Child SA that it is currently rekeying.

References:

• [RFC 5996] - Section 2.25.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(End-Node) (Er	d-Node)
j	 - IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) > IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
j	- IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
i	i
l j	
	- IPsec {Echo Request} (Packet #3)
	> IPsec {Echo Reply}
	> CREATE_CHILD_SA request (HDR, SK {N(REKEY_SA), SA, Ni, TSi, TSr}) (Judgment #4)
	INFORMATIONAL request (HDR, SK {D})
	(Packet #4) > INFORMATIONAL response (HDR, SK {D}) (Judgment #5)
 V	l V
N: USE_TRANSPORT_MC	DE

Packet #1	See Common Packet #1
I donoc n	ood common i dokec mi

Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See below

Packet #4: INFORMATIONAL request

IPv6 Header	Same as the Common Packet #17	
UDP Header	Same as the Common Packet #17	
IKEv2 Header	Same as the Common Packet #17	
E Payload	Other fields are same as the Common Packet #17	
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.Observe the messages transmitted on Link A.
- 6. Observe the messages transmitted on Link A.
- 7. Repeat Steps 5 and 6 until lifetime of SA is expired for 30 seconds.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request. The request includes a Delete payload with 3 (ESP) as Protocol ID, 4 as SPI Size and SPI value to delete Child SA.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey a Child SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence

Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 10: Judgment #5

The NUT transmits an INFORMATIONAL response. The response includes a Delete payload with 3 (ESP) as Protcol ID, 4 as SPI Size and SPI value to delete Child SA.

Possible Problems:

None

[EN.R.P69.L3252.ADD] Test IKEv2.EN.R.1.4.1.8.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can process INFORMATIONAL request to close IKE SA that it is currently rekeying.

References:

• [RFC 5996] - Section 2.25.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
(End-Node)
                (End-Node)
              ----- IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
           ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #1)
            ------| IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
                  | (Packet #2)
              ---->| IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
                   | (Judgment #2)
                  -- | IPsec {Echo Request} |
                   | (Packet #3)
                                          repeat Echo exchange until lifetime of SA is expired
               ---->| IPsec {Echo Reply}
                   | (Judgment #3)
                  ->| CREATE_CHILD_SA request (HDR, SK {SA, Ni, KEi})
                    | (Judgment #4)
            -----| INFORMATIONAL request (HDR, SK {D})
                    | (Packet #4)
            ---->| INFORMATIONAL response (HDR, SK {})
                   | (Judgment #5)
                   | CREATE_CHILD_SA request (HDR, SK {SA, Ni, KEi})
                   | (Judgment #6)
N: USE_TRANSPORT_MODE
```


Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See Common below

Packet #4: INFORMATIONAL request

IPv6 Header	Same as the Common Packet #17	
UDP Header	Same as the Common Packet #17	
IKEv2 Header	Same as the Common Packet #17	
E Payload	Other fields are same as the Common Packet #17	
	Next Payload 42 (Delete)	
Delete Payload	Next Payload 0 (last)	
	Critical 0	
	Reserved 0	
	Payload Length 16	
	Procotol ID 1 (IKE_SA)	
	SPI Size	
	# of SPIs	
	Security Parameter Index(es) (SPI) em	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.Observe the messages transmitted on Link A.
- 6. Observe the messages transmitted on Link A.
- 7. Repeat Steps 5 and 6 until lifetime of SA is expired for 30 seconds.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request. The request includes a Delete payload with 1 (IKE) as Protocol ID, zero as SPI Size and no SPI value.
- 10. Observe the messages transmitted on Link A.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey IKE SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 10: Judgment #5

The NUT transmits an INFORMATIONAL response with no payloads.

Step 11: Judgment #6

The NUT does not retransmit a CREATE_CHILD_SA request to rekey a Child SA.

Possible Problems:

None

[EN.R.P69.L3258.ADD] Test IKEv2.EN.R.1.4.1.9.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can process CREATE_CHILD_SA request to rekey a Child SA when it is currently rekeying the IKE SA.

References:

• [RFC 5996] - Section 2.5.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN1
(End-Node) (End-Node)
 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
< IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr}) (Judgment #2)
 < IPsec {Echo Request}

> CREATE_CHILD_SA request (HDR, SK {SA, Ni, KEi})
CREATE_CHILD_SA request (HDR, SK {N(REKEY_SA), SA, Ni, TSi, TSr})
CREATE_CHILD_SA response (HDR, SK {N(TEMPORARY_FAILURE)})
N: USE_TRANSPORT_MODE

Packet #1	See Common Packet #1

Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See Common Packet #11

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.Observe the messages transmitted on Link A.
- 6. Observe the messages transmitted on Link A.
- 7. Repeat Steps 5 and 6 until lifetime of SA is expired for 30 seconds.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request to rekey a Child SA. The request includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA request to rekey a Child SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response. The response includes a Notify payload of type TEMPORRAY_FAILURE.

Possible Problems:

None

[EN.R.P69.L3260.ADD] Test IKEv2.EN.R.1.4.1.10.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can process CREATE_CHILD_SA request to delete a Child SA when it is currently rekeying the IKE SA

References:

• [RFC 5996] - Section 2.5.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	11	
(End-Node) (End-Node)		
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
l i i	(Packet #1)	
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
	(Judgment #1)	
<	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})	
	(Packet #2)	
>	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})</pre>	
	(Judgment #2)	
·:·	•	
	(5 D	
· ·	IPsec {Echo Request}	
'	(Packet #3)	
>	IPsec {Echo Reply} repeat Echo exchange until lifetime of SA is expired (Judgment #3)	
	(Judgillett #3)	
'		
··· ·	•	
	CREATE_CHILD_SA request (HDR, SK {SA, Ni, KEi})	
	(Judgment #4)	
1 i i	(V	
	INFORMATIONAL request (HDR, SK {D})	
l i i	(Packet #4)	
>	INFORMATIONAL response (HDR, SK {D})	
i i	(Judgment #5)	
V		
N: USE_TRANSPORT_MODE		

Packet #2	See Common Packet #3
Packet #3	See Common Packet #19
Packet #4	See below

Packet #4: INFORMATIONAL request

IPv6 Header	Same as the Common Packet #17	
UDP Header	Same as the Common Packet #17	
IKEv2 Header	Same as the Common Packet #17	
E Payload	Other fields are same as the Common Packet #17	
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.Observe the messages transmitted on Link A.
- 6. Observe the messages transmitted on Link A.
- 7. Repeat Steps 5 and 6 until lifetime of SA is expired for 30 seconds.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits an INFORMATIONAL request. The request includes a Delete payload with 3 (ESP) as Protcol ID, 4 as SPI Size and SPI value to delete Child SA.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 8: Judgment #4

TN1 transmits an INFORMATIONAL request. The request includes a Delete payload with 3 (ESP) as Protcol ID, 4 as SPI Size and SPI value to delete Child SA.

Step 10: Judgment #5
The NUT transmits an INFORMATIONAL response with 3 (ESP) as Protcol ID, 4 as SPI Size and SPI value to delete Child SA.

Possible Problems:

None

Section 1.2.2. Endpoint to Security Gateway Tunnel

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.EN.R.2.1.1.1: Sending IKE_AUTH response

Purpose:

To verify an IKEv2 device transmits IKE_AUTH response using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5

Part A: IKE Header Format (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (ADVANCED)

- 5. TN1 transmits an IKE_SA_INIT request to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an IKE SA INIT request to NUT.

8. Observe the messages transmitted on Link A.

Part C: IDr Payload Format (ADVANCED)

- 9. TN1 transmits an IKE SA INIT request to NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an IKE_SA_INIT request to NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (ADVANCED)

- 13. TN1 transmits an IKE SA INIT request to NUT.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 transmits an IKE SA INIT request to NUT.
- 16. Observe the messages transmitted on Link A.

Part E: SA Payload Format (ADVANCED)

- 17. TN1 transmits an IKE_SA_INIT request to NUT.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 transmits an IKE_SA_INIT request to NUT.
- 20. Observe the messages transmitted on Link A.

Part F: TSi Payload Format (ADVANCED)

- 21. TN1 transmits an IKE_SA_INIT request to NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits an IKE_SA_INIT request to NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSr Payload Format (ADVANCED)

- 25. TN1 transmits an IKE_SA_INIT request to NUT.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 transmits an IKE_SA_INIT request to NUT.
- 28. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted IKE Header containing following values:

1 OROM	
1 2 3	
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0	1
+-	+-+
! IKE_SA Initiator's SPI	!
!	!
+-	+-+
! IKE_SA Responder's SPI	!
!	!
+-	+-+
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags	!
+-	+-+
! Message ID	!
+-	+-+
! Length	!
+-	+-+

Figure 84 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Encrypted Payload containing following values:

Figure 85 Encrypted payload

- A Next Payload field set to IDr Payload (36).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm.
- An Encrypted IKE Payloads field set to encrypted IKE Payloads
- A Padding field set to any value which to be a multiple of the encryption block size.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. The checksum must be valid.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted ID Payload containing following values:

Figure 86 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 87 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 20: Judgment #2

			1	2		3		
	0 1 2 3 4	5 6 7 8 9	0 1 2 3	4 5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+-+	-+-+-+-	+-+-+-+	+-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+ -		
	! Next 4	4 !0!	0	! Length	40	!		
	+-+-+-+-+	-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+ -		
	! 0	!	0	! Length	36	!		
	+-+-+-+-+	-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+	1	1
	! Number	1 ! Pro	ot ID 3	S ! SPI Size 4	! Trans	Cnt 3 !	1	
	+-+-+-+-+		+-+-+-+	-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+	1	
	! SPI value					!	1	
	- +-+-+-+-+	-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+	1	1
	! 3	!	0	! Length	8	!		
Transform	+-+-+-+-+	-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+	1	SA Payload
	! Type 1	(EN) !	0	! Transform ID	3	(3DES) !	Proposal	
	- +-+-+-+-+	-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+		
1	! 3	!	0	! Length	8	!	1	
Transform	+-+-+-+-+	-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+		
1	! Type 3	(IN) !	0	! Transform ID	2	(SHA1) !	1	
	- +-+-+-+-+	-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+		
	! 0	!	0	! Length	8	!		
Transform	+-+-+-+-+	-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+-	+-+-+-	-+-+-+-+	1	
	! Type 5	(ESN)!	0	! Transform ID	0	(No) !	1	
	- +-+-+-+-+	-+-+-+-	+-+-+-+	-+-+-+-+-+-+-+-	+-+-+	-+-+-+-+ -		

Figure 88 SA Payload contents

The NUT transmits an IKE_AUTH response including properly formatted SA Payload containing following values (refer following figures):

Figure 89 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 90 Proposal sub-structure format

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes.
- A Proposal # field set to 1.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

	1		2	3		
0 1 2 3 4 5 6 7 8	9 0 1 2 3 4	5 6 7	8 9 0 1 2 3 4 5 6 7	8 9 0 1		
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-		-+-+-+		
! 0 (last) or 3 !	RESERVED	!	Transform Length	!		
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-	+-+-+-+-+-+-+-+-+	-+-+-+		
!Transform Type !	RESERVED	!	Transform ID	!		
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-		-+-+-+		
!				!		
~	Transfo	rm Attı	ributes	~		
!				!		
+-+-+						

Figure 91 Transform sub-structure format

- A 0 or 3 field set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).
- A 0 or 3 field set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).
- A 0 or 3 field set to zero.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSi Payload containing following values:

	1	2	3
0123456789	0 1 2 3 4 5	678901234567	8 9 0 1
+-+-+-+-+-+-+-+-+-	+-+-+-+-+	-+-+-+-+-+-+-+-+-+-	+-+-+-+
! Next Payload !C!	RESERVED !	Payload Length	!
+-+-+-+-+-+-+-+-	+-+-+-+-+	-+-+-+-+-+-+-+-+-+-	+-+-+-+
! Number of TSs !		RESERVED	!
+-+-+-+-+-+-+-+-	+-+-+-+-+	-+-+-+-+-+-+-+-+-+-	+-+-+-+
!			!
~	<traffic< td=""><td>Selectors></td><td>~</td></traffic<>	Selectors>	~
!			!
+-+-+-+-+-+-+-+-	+-+-+-+-+	-+-+-+-+-+-+-+-+-+-	+-+-+-+

Figure 92 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 93 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to NUT address.
- A Ending Address field set to NUT address.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

The NUT transmits an IKE_AUTH response including properly formatted TSr Payload containing following values:

Figure 94 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 95 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to TN1 address.
- An Ending Address field set to TN1 address.

Possible Problems:

• None.

Test IKEv2.EN.R.2.1.1.2: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	TH1
(End-Node)	(SGW)	(Host)
<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
li	ĺ	(Packet #1)
	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
li	į	(Judgment #1)
l i	į	
<		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
li	į	(Packet #2)
j	>	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
l i	į	(Judgment #2)
li	į	
<======	:======+	IPsec {Echo Request}
l i	1	(Packet #3)
	======+	> IPsec {Echo Reply}
li	1	(Judgment #3)
l i	i	
v.	· V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #20

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT response to NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH1 transmits an Echo Request and TN1 forwards an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Section 2. Security Gateway Section 2.1. Initiator

Section 2.1.1. Security Gateway to Security Gateway Tunnel

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.SGW.I.1.1.1: Sending IKE_SA_INIT request

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT request using properly Header and Payloads format

References:

- [RFC4306] Section 1.2, 2.10, 3.1, 3.2, 3.3, 3.4 and 3.9
- [RFC 4718] Sections 7.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Part B: SA Payload Format (BASIC)

- 3. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 4. Observe the messages transmitted on Link A.

Part C: KE Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

Part D: Nonce Payload Format (BASIC)

- 7. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted IKE Header containing following values:

Figure 96 Header format

- An IKE_SA Initiator's SPI field set to a 64-bits value chosen by the NUT. It MUST not be zero.
- An IKE_SA Responder's SPI field set to zero.
- A Next Payload field set to SA Payload (33).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_SA_INIT (34).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to zero.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 4: Judgment #1

			1		2	3		
	0 1 2 3	4 5 6	7 8 9 0 -+-+-+	1234	5678901234	5678901	.+	
	! Next	34	!0!	0	! Length	44	!	
	-)	!	0	! Length	40	!	
	! Number	1	! Prot	ID 1	! SPI Size 0 !	Trans Cnt 4	! j	
 		3	!	0	+-+-+-+-+-+-+- ! Length	8	!	
Transform	! Type	1 (EN)	!	0		3 (3DES)	!	
	! ;	3	!	0	+-+-+-+-+-+-+- ! Length	8	!	SA Payload
Transform 	! Type 2	2 (PR)	!	0	+-+-+-+-+-+-+- ! Transform ID	2 (SHA1)	! [
· · · · · · ·	! ;	3	!	0	+-+-+-+-+-+-+- ! Length	8	!	
Transform 	! Type :			0	+-+-+-+-+-+-+- ! Transform ID	2 (SHA1)	! j	
	· +-+-+- ! (-+-+-+ !	0	+-+-+-+-+-+-+- ! Length	8	!	
Transform	+-+-+-+ ! Type 4				+-+-+-+-+-+-+- ! Transform ID		•	

Figure 97 SA Payload contents

The NUT transmits an IKE_SA_INIT request including properly formatted SA Payload containing following values (refer following figures):

Figure 98 SA Payload format

- A Next Payload field set to KE Payload (34).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 99 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 40 bytes for this proposal according to Common Configuration.
- A Proposal # field set to 1 if this structure is the first proposal, otherwise set to 1 greater than the previous proposal.
- A Protocol ID field set to IKE (1).
- A SPI Size field set to zero.
- A # of Transforms field set to 4.

A Transform field set to following (There are 4 Transform Structures).

Figure 100 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.

- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for PRF_HMAC_SHA1.
- A Transform Type field set to PRF (2).
- A RESERVED field set to zero.
- A Transform ID set to PRF HMAC SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #4

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for 1024 MODP Group.
- A Transform Type field set to D-H (4).
- A RESERVED field set to zero.
- A Transform ID set to Group2 (2).

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted KE Payload containing following values:

Figure 101 KE Payload format

- A Next Payload field set to Nonce Payload (40).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 136 bytes for Group 2.
- A DH Group field set to Group2 (2).
- A RESERVED field set to zero.
- A Key Exchange Data field set to Diffie-Hellman public value. The length of the Key Exchange Data field must be equal to 1024bit.

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT request including properly formatted Nonce Payload containing following values:

Figure 102 Nonce Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Nonce Data field set to random data generated by the transmitting entity. The size of the Nonce must between 16 and 256 octets.

Possible Problems:

• IKE_SA_INIT request has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
[N(COOKIE)],
SA, KE, Ni,
[N(NAT_DETECTION_SOURCE_IP)+,
N(NAT_DETECTION_DESTINATION_IP)],
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.

Test IKEv2.SGW.I.1.1.1.2: Sending IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format.

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
-----------	----------------------

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: IDi Payload Format (BASIC)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (BASIC)

- 13. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: SA Payload Format (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: TSi Payload Format (BASIC)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSr Payload Format (BASIC)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted IKE Header containing following values:

Figure 103 Header format

Initiator's SPI field value.

- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Encrypted Payload containing following values:

Figure 104 Encrypted payload

- A Next Payload field set to IDi Payload (35).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum

must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted ID Payload containing following values:

Figure 105 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted AUTH Payload containing following values:

	, 0	I CIII	
	1	2	3
0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5	6 6 7 8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+	-+-+-+
! Next Payload !C!	RESERVED	! Payload Length	!
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+	-+-+-+
! Auth Method !		RESERVED	!
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+	-+-+-+
!			!
~	Authentio	cation Data	~
!			!
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	-+-+-+

Figure 106 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 20: Judgment #2

Figure 107 SA Payload contents

The NUT transmits an IKE_AUTH request including properly formatted SA Payload containing following values (refer following figures):

Figure 108 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 109 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 110 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSi Payload containing following values:

	7 0/10	****	
	1	2	3
0123456789	0 1 2 3 4 5 6	7 8 9 0 1 2 3 4 5 6	7 8 9 0 1
+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+	+-+-+-+-+-+-+-	+-+-+-+-+
! Next Payload !C!	RESERVED !	Payload Leng	th!
+-+-+-+-+-+-+-+-	+-+-+-+-+-+		+-+-+-+-+
! Number of TSs !	F	RESERVED	!
+-+-+-+-+-+-+-+-	+-+-+-+-+-+-	+-+-+-+-+-+-+-	+-+-+-+-+
!			!
~	<traffic se<="" td=""><td>electors></td><td>~</td></traffic>	electors>	~
!			!
+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-	+-+-+-+-+

Figure 111 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 112 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- A Ending Address field set to greater that or equal to Prefix B.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSr Payload containing following values:

Figure 113 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 114 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix Y.
- An Ending Address field set to less than or equal to Prefix Y.

Possible Problems:

• IKE_AUTH request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload

may be different from this sample.

```
IDi,
[CERT+],
[N(INITIAL_CONTACT)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[IDr],
AUTH,
[CP(CFG_REQUEST)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

Test IKEv2.SGW.I.1.1.1.3: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	ļ	1	L LIVE CA INIT TOTAL (LIDD, CA:4, IVE: N:)
		·> 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
ļ	I	ļ	(Packet #1)
	ļ		I IVE AUTH request (UDD CV (ID; AUTH
		·> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	i	i	(Judgment #2)
ļ ļ	<		IKE_AUTH response (HDR, SK {IDr, AUTH,
!	ļ	ļ	SAr2, TSi, TSr})
	ļ	ļ	(Packet #2)
<	। · +=======	' :======+	IPsec {Echo Request}
İ	1	1	(Packet #3) (Judgment #3)
	· +=======	:======+	> IPsec {Echo Reply}
	ļ	ļ	(Packet #4) (Judgment #4)
l l	I V	I V	l V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT

- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of sending Echo Request.

Group 1.2. Use of Retransmission Timers

Test IKEv2.SGW.I.1.1.2.1: Retransmissions of IKE_SA_INIT requests

Purpose:

To verify an IKEv2 device retransmits IKE_SA_INIT request using properly Header and Payloads format

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 waits for the event of a timeout on NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Test IKEv2.SGW.I.1.1.2.2: Stop of retransmission of IKE_SA_INIT requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 waits for the event of a timeout on NUT.
- 4. Observe the messages transmitted on Link A
- 5. TN1 responds with an IKE_SA_INIT response to the NUT.
- 6. TN1 waits for the event of a timeout on NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Step 7: Judgment #3

The NUT never retransmits an IKE_SA_INIT request which has the same Message ID value as the previous IKE_SA_INIT request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Test IKEv2.SGW.I.1.1.2.3: Retransmissions of IKE_AUTH requests

Purpose:

To verify an IKEv2 device retransmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
 <	 > IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr} (Judgment #2)
	* wait for the event of a timeout
	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr} (Judgment #3)
l V	l V

Packet #1 See Common Packet #2

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Test IKEv2.SGW.I.1.1.2.4: Stop of retransmission of IKE_AUTH requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set retransmission timer to 1 second.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
	* wait for the event of a timeout
	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #3)
<	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	* wait for the event of a timeout
	X never send IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #4)
V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 waits for the event of a timeout on NUT.

- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE AUTH response to the NUT.
- 8. TN1 waits for the event of a timeout on NUT.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Step 9: Judgment #4

The NUT never retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

• Each NUT has the different retransmission timers. If it is imposible to configure the retransmission timer, modifying tester is required.

Group 1.3. State Synchronization and Connection Timeouts

Test IKEv2.SGW.I.1.1.3.1: State Synchronization with ICMP messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives ICMP messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TR1	TN1	TH2
(Host)	(SGW)	(Router)	(SGW)	(Host)
	 		 > 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1,
	ļ	ļ		KEr, Nr) (Packet #1)
	 		> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	 	 	=====+ ======+	IPsec {Echo Request} (Packet #3) (Judgment #3) > IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 < 			Destination Unreachable (No route to destination) (Packet #5)
<	 	 	 	IPsec {Echo Request} (Packet #6) (Judgment #5) > IPsec {Echo Reply} (Packet #7) (Judgment #6)
V	V	V	V	V

See Common Packet #2	
See Common Packet #6	
See Common Packet #21	
See Common Packet #25	
See below	
See Common Packet #21	
See Common Packet #25	

Packet #5: ICMPv6 Destination Unreachable

IPv6 Header	Source Address	TR1's Global Address on Link A
	Destination Address	NUT's Global Address on Link A
ICMPv6 Header	Type	1
	Code	0

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. After reception of an Echo Reply via NUT, TR1 transmits ICMP Destination Unreachable Message to the NUT and then TH2 transmits an Echo Request to the TH1.
- 11. Observe the messages transmitted on Link B.
- 12. TH1 transmits an Echo Reply to TH2.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT forwards an Echo Request.

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.3.2: State Synchronization with IKE messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives IKE messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
		 >	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
i	i	j	(Judgment #1)
	< 		IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
	 		(Sudgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	 	 ======+ 	IPsec {Echo Request} (Packet #3) (Judgment #3)
	 	======+ 	> IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 < 		INFORMATIONAL request (HDR, N(INVALID_SPI)) (Packet #5)
	·+=======	' ======+	IPsec {Echo Request}
		 	(Packet #6) (Judgment #5)
	 - =============================	 	> IPsec {Echo Reply} (Packet #7) (Judgment #6)
l V	 V	l V	l V

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #6	
Packet #3	See Common Packet #21	
Packet #4	See Common #25	
Packet #5	See below	
Packet #6	See Common Packet #21	

Packet #7 See Common Packet #25

Packet #4: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link A
	Destination Address	NUT's Global Address on Link X
UDP Header Source Port		500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	any
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
Payload Length		8
	Protocol ID	3 (ESP)
	SPI Size	0
	Notify Message Type	11 (INVALID_SPI)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. TN1 transmits INFORMATIONAL request with a Notify payload of type INVALID_ SPI to the NUT.
- 11. TH2 transmits an Echo Request to TH1.
- 12. Observe the messages transmitted on Link B.
- 13. TH1 transmits an Echo Reply to TH2.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 12: Judgment #5

The NUT forwards an Echo Request.

Step 14: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None

Test IKEv2.SGW.I.1.1.3.3: Close connections when repeated attempts fail

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

 n each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2

Part A: (BASIC)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TN1 waits for the event of a timeout on the NUT.
- 14. Observe the messages transmitted on Link A.
- 15. Repeat Step 5 and Step 6 until the NUT's last restransmission comes.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Step 8: Judgment #4

The NUT never retransmits an IKE_AUTH request which has the same Message ID value as the previous IKE_AUTH request's Message ID value in IKE Header.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.3.4: Close connections when receiving INITIAL_CONTACT

This test case was deleted at revision 1.1.0.

Test IKEv2.SGW.I.1.1.3.5: Sending Liveness check

This test case was deleted at revision 1.1.0.

Test IKEv2.SGW.I.1.1.3.6: Sending Delete Payload for IKE_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when IKE_SA is deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 waits until expiring IKE_SA's lifetime and does not respond to an INFORMATIONAL request with an INFORMATIONAL response for liveness check.

7. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL request with a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Possible Problems:

• At Step 7, NUT can transmit INFORMATIONAL request with a Delete Payload including 2 (ESP) as Protocol ID, 4 as SPI Size and SPI value to delete CHILD_SA before transmitting an INFORMATIONAL request to delete IKE_SA.

Test IKEv2.SGW.I.1.1.3.7: Sending Delete Payload for CHILD_SA

This test case was deleted at revision 1.1.0.

Test IKEv2.SGW.I.1.1.3.8: Sending Liveness check with unprotected messages

This test case was deleted at revision 1.1.0.

Group 1.4. Version Numbers and Forward Compatibility

Test IKEv2.SGW.I.1.1.4.1: Unrecognized payload types and critical bit is not set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is not set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM				
TH1	TH1 NUT TN1 TH2				
(Host)	(SGW)	(SGW)	(Host)		
	 <	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)		
 	 	 ======+ ======+ 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)		
	 <	 > 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {P, SA, Nr, TSi, TSr}) (Packet #5)		
	 		IPsec {Echo Request} (new CHILD_SA) (Packet #6) (Judgment #6) > IPsec {Echo Request} (new CHILD_SA) (Packet #7) (Judgment #7)		
N: REKEY_SA P: Payload with an invalid payload type					

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See Common Packet #21
	This packet is cryptographically protected by
	the CHILD_SA negotiated at Step 11.
Packet #7	See Common Packet #25

Packet #5: CREATE_CHILD_SA response

IPv6 Header	All fields are same as Common Packet #16 Payload		
UDP Header	All fields are same as Common Packet #16 Payload		
IKEv2 Header	All fields are same as Common Packet #16 Payload		
E payload	Next Payload	Invalid payload type value	
	Other fields are same as Common Packet #16		
Invalid Payload	Next Payoad	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length	4	

SA Payload	All fields are same as Common Packet #16 Payload
Ni, Nr paylaod	All fields are same as Common Packet #16 Payload
TSi Payload	All fields are same as Common Packet #16 Payload
TSr Payload	All fields are same as Common Packet #16 Payload

Part A: Invalid payload type 1 (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is not set.
- 13. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Response to the TH2.
- 16. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 22. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 23. Observe the messages transmitted on Link B.
- 24. TH1 transmits an Echo Reply to TH2.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 22 through 25 until lifetime of SA is expired.
- 27. Observe the messages transmitted on Link A.
- 28. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is not set.
- 29. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 30. Observe the messages transmitted on Link B.
- 31. TH1 transmits an Echo Response to the TH2.
- 32. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 (BASIC)

- 33. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 34. Observe the messages transmitted on Link A.
- 35. TN1 responds with an IKE_SA_INIT response to the NUT.
- 36. Observe the messages transmitted on Link A.
- 37. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 38. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 39. Observe the messages transmitted on Link B.
- 40. TH1 transmits an Echo Reply to TH2.
- 41. Observe the messages transmitted on Link A.
- 42. Repeat Steps 38 through 41 until lifetime of SA is expired.
- 43. Observe the messages transmitted on Link A.
- 44. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid payload's critical flag is not set.
- 45. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 46. Observe the messages transmitted on Link B.
- 47. TH1 transmits an Echo Response to the TH2.
- 48. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 (BASIC)

- 49. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 50. Observe the messages transmitted on Link A.
- 51. TN1 responds with an IKE_SA_INIT response to the NUT.
- 52. Observe the messages transmitted on Link A.
- 53. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 54. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 55. Observe the messages transmitted on Link B.
- 56. TH1 transmits an Echo Reply to TH2.
- 57. Observe the messages transmitted on Link A.
- 58. Repeat Steps 54 through 57 until lifetime of SA is expired.
- 59. Observe the messages transmitted on Link A.
- 60. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is not set.
- 61. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 62. Observe the messages transmitted on Link B.
- 63. TH1 transmits an Echo Response to the TH2.
- 64. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 14: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 16: Judgment #7

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part B

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 23: Judgment #3

The NUT forwards an Echo Request.

Step 25: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 27: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 30: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 32: Judgment #7

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part C

Step 34: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 36: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 39: Judgment #3

The NUT forwards an Echo Request.

Step 41: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 43: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 46: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 48: Judgment #7

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part D

Step 50: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 52: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 55: Judgment #3

The NUT forwards an Echo Request.

Step 57: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 59: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 62: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 64: Judgment #7The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.4.2: Unrecognized payload types and critical bit is set

Purpose:

To verify an IKEv2 device rejects the messages with invalid payload types when the invalid type payload's critical bit is set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM				
TH1	NUT	TN1	TH2		
(Host)	(SGW)	(SGW)	(Host)		
1 1		1			
l i	j	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)		
		1	(Judgment #1)		
l i	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)		
i	j	İ	(Packet #1)		
		1			
		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})		
		1	(Judgment #2)		
	<		IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})		
			(Packet #2)		
<	· +=========	===+	IPsec {Echo Request} repeat Echo exchange		
			(Packet #3) (Judgment #3) until lifetime of SA		
!	· +===========================	===+	> IPsec {Echo Reply} is expired		
!		ļ	(Packet #4) (Judgment #4)		
1			•••		
!		ļ	OPENTE OUT DO ON TO THE OUT ON THE TO TO TO TO		
1 !		>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})		
		ļ	(Judgment #5)		
		I	L OPENTE CHILD ON TOTAL (UDD. OV. (D. CA. No. TO: TOTAL)		
	<		CREATE_CHILD_SA response (HDR, SK {P, SA, Nr, TSi, TSr})		
		[(Packet #5)		
	 · +============		IPsec {Echo Request} (new CHILD_SA)		
	· +===========================	===+	(Packet #6) (Judgment #6)		
	 X	l I	(Packet #6) (Judgment #6) IPsec {Echo Request} (new CHILD_SA)		
	I	I I	(Packet #7) (Judgment #7)		
	I I	I I	(Tacket #1) (Judyment #1)		
l V	I V	I V	V		
, v	v v v v				
N: REKEY SA	N: REKEY_SA				
_	P: Payload with an invalid payload type				
1. Taylodd wrth an invaria paylodd typo					

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #6	
Packet #3	See Common Packet #21	
Packet #4	See Common Packet #25	
Packet #5	See below	
Packet #6	See Common Packet #21	
	This packet is cryptographically protected by	
	the CHILD_SA negotiated at Step 11.	
Packet #7	See Common Packet #25	

Packet #5: CREATE CHILD SA response

73. CKEATE_CHIED_SA response				
IPv6 Header	All fields are	same as Common Packet #16 Payload		
UDP Header	All fields are same as Common Packet #16 Payload			
IKEv2 Header	All fields are	All fields are same as Common Packet #16 Payload		
E payload	Next Payload	Invalid payload type value		
	Other fields are same as Common Packet #16			
Invalid Payload	Next Payoad 33 (SA			
	Critical 1			
	Reserved 0			
	Payload Length	4		
SA Payload	All fields are same as Common Packet #16 Payload			
Ni Nr navlaod	All fields are same as Common Packet #16 Payload			

TSi Payload	All fields are same as Common Packet #16 Payload
TSr Payload	All fields are same as Common Packet #16 Payload

Part A: Invalid payload type 1 and Critical bit is set (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is set.
- 13. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Response to the TH2.
- 16. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 and Critical bit is set (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 22. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 23. Observe the messages transmitted on Link B.
- 24. TH1 transmits an Echo Reply to TH2.
- 25. Observe the messages transmitted on Link A.
- 26. Repeat Steps 22 through 25 until lifetime of SA is expired.
- 27. Observe the messages transmitted on Link A.
- 28. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is set.
- 29. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 30. Observe the messages transmitted on Link B.
- 31. TH1 transmits an Echo Response to the TH2.
- 32. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 Critical bit is set (BASIC)

- 33. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 34. Observe the messages transmitted on Link A.
- 35. TN1 responds with an IKE_SA_INIT response to the NUT.
- 36. Observe the messages transmitted on Link A.
- 37. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 38. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 39. Observe the messages transmitted on Link B.
- 40. TH1 transmits an Echo Reply to TH2.
- 41. Observe the messages transmitted on Link A.
- 42. Repeat Steps 38 through 41 until lifetime of SA is expired.
- 43. Observe the messages transmitted on Link A.
- 44. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid payload's critical flag is set.
- 45. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 46. Observe the messages transmitted on Link B.
- 47. TH1 transmits an Echo Response to the TH2.
- 48. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 Critical bit is set (BASIC)

- 49. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 50. Observe the messages transmitted on Link A.
- 51. TN1 responds with an IKE_SA_INIT response to the NUT.
- 52. Observe the messages transmitted on Link A.
- 53. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 54. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 55. Observe the messages transmitted on Link B.
- 56. TH1 transmits an Echo Reply to TH2.
- 57. Observe the messages transmitted on Link A.
- 58. Repeat Steps 54 through 57 until lifetime of SA is expired.
- 59. Observe the messages transmitted on Link A.
- 60. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response which includes a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the invalid payload's critical flag is set.
- 61. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 62. Observe the messages transmitted on Link B.
- 63. TH1 transmits an Echo Response to the TH2.
- 64. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 14: Judgment #6

The NUT never forwards an Echo Request to the TH1.

Step 16: Judgment #7

The NUT never forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part B

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 23: Judgment #3

The NUT forwards an Echo Request.

Step 25: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 27: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 30: Judgment #6

The NUT never forwards an Echo Request to the TH1.

Step 32: Judgment #7

The NUT never forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part C

Step 34: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 36: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 39: Judgment #3

The NUT forwards an Echo Request.

Step 41: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 43: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 46: Judgment #6

The NUT never forwards an Echo Request to the TH1.

Step 48: Judgment #7

The NUT never forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Part D

Step 50: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 52: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 55: Judgment #3

The NUT forwards an Echo Request.

Step 57: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 59: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 62: Judgment #6

The NUT never forwards an Echo Request to the TH1.

Step 64: Judgment #7

The NUT never forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Possible Problems:

• None.

Group 1.5. Cookies

Test IKEv2.SGW.I.1.1.5.1: Retrying IKE_SA_INIT request with a Notify payload of type COOKIE

Purpose:

To verify an IKEv2 device retries IKE_SA_INIT request using a Notify payload of type COOKIE.

References:

- [RFC 4306] Sections 2.6 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
-----------	-----------

Packet #1: IKE_SA_INIT response

acket #1. IIIL_t	JI I II I I Coponic	
IPv6 Header		All fields are same as Common Packet #2
UDP Header		All fields are same as Common Packet #2
IKEv2 Header	IKE_SA Initiator's SPI	The same value as corresponding
		request's IKE_SA Initiator's SPI value
	IKE_SA Responder's SPI	0
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	34 (IKE_SA_INIT)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0

	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	Cookie value

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including a Notify payload of type COOKIE containing following values:

Figure 115 Notify Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A SPI Size field set to zero.
- A Notify Message Type field set to COOKIE (16390).
- A Notification Data field set to the TN1 supplied cookie data.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.5.2: Interaction of COOKIE and INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles a series of the Initial Exchanges using a Notify payload of type COOKIE and type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6, 2.7 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, configure the IKE_SA parameters as described as following. KEi payload must carry either D-H Group 14 public key value or D-H Group 24 public key value.

	IKE_SA Algorithms			
	Encryption PRF Integrity D-H		D-H Group	
Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:


```
Sequence #1:
   NUT
                   TN1
  (SGW)
                  (SGW)
                  ->| IKE_SA_INIT request (HDR, SAi1(DH#2, DH#14), KEi(DH#14), Ni)
                   | (Judgment #1)
        ----- | IKE_SA_INIT response (HDR, N(COOKIE))
                    | (Packet #1)
            ----->| IKE_SA_INIT request (HDR, N(COOKIE), SAi1(DH#2, DH#14), KEi(DH#14), Ni)
                    | (Judgment #2)
                   --| IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD(DH#2)))
                    | (Packet #2)
            1----->| IKE_SA_INIT request (HDR, SAi1(DH#2, DH#14), KEi'(DH#2), Ni)
                      or
                  ->| IKE_SA_INIT request (HDR, N(COOKIE), SAi1(DH#2, DH#14), KEi'(DH#2), Ni)
                    | (Judgment #3)
    *1) If the NUT send IKE_SA_INIT request (HDR, SAi1, KEi , Ni), go to Sequence #2.
    *2) If the NUT send IKE_SA_INIT request (HDR, N(COOKIE), SAi1, KEi , Ni), go to Sequence #3.
    Otherwise, this test is failed.
Sequence #2:
  NUT
                  TN1
  (SGW)
                  (SGW)
                 --- | IKE_SA_INIT response (HDR, N(COOKIE'))
                   | (Packet #3)
          ----->| IKE_SA_INIT request (HDR, N(COOKIE'), SAi1(DH#2, DH#14), KEi'(DH#2), Ni)
                    | (Judgment #4)
   Go to Sequence #3.
Sequence #3:
   NUT
                  TN1
  (SGW)
                  (SGW)
                    | IKE_SA_INIT response (HDR, SAr1(DH#2), KEr(DH#2), Nr)
                    | (Packet #4)
                  ->| IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                    | (Judgment #5)
It is possible to use DH#24 instead of DH14.
```

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #2

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as	the common packet #1
UDP Header	Same as	the common packet #1
IKEv2 Header	Other fields are same as	the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	0 (No Next Payload)
	Critical	0
	Reserved	0

Payload Length	Any
Protocol ID	0
SPI Size	0
Notify Message Type	COOKIE (16390)
Notification Data	Cookie value

Packet #2: IKE_SA_INIT response

IPv6 Header	Same as the common packet #1	
UDP Header		Same as the common packet #1
IKEv2 Header	Other fields	are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	0 (No Next Payload)
	Critical	0
	Reserved	0
	Payload Length	10
	Protocol ID	0
	SPI Size	0
	Notify Message Type	INVALID_KE_PAYLOAD (17)
	Notification Data	The accepted D-H Group # (2)

Packet #3: IKE SA INIT response

IPv6 Header		Same as the common packet #1
UDP Header	Same as the common packet #1	
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload	0 (No Next Payload)
	Critical	0
	Reserved	0
	Payload Length	Any
	Protocol ID	0
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	Different cookie value from Packet #1's cookie value.

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. If the IKE_SA_INIT request from NUT includes a Notify payload of type COOKIE, TN1 responds with an IKE_SA_INIT response. The message has a different cookie value from the cookie value at Step3.
 - A) Observe the messages transmitted on Link A.
 - B) TN1 responds with an IKE_SA_INIT response.
- 8. If the IKE_SA_INIT request from NUT does not include a Notify payload of type COOKIE, TN1 responds with an IKE_SA_INIT response.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as

proposed algorithms. KEi payload has D-H Group 14 public key value. Depending on configuration, it is possible to use D-H Group 24 for SA proposal and KEi payload instead of D-H Group 14.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request. The message has a Notify payload of type COOKIE with the cookie data supplied by the responder as the first payload. All other payloads are unchanged.

Step 6: Judgment #3

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 5. All other payloads are unchanged.

Step 7A: Judgment #4

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. The message must have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 7. All other payloads are unchanged.

Step 9: Judgment #5

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Responder

Purpose:

To verify an IKEv2 device properly handles a series of the Initial Exchanges using a Notify payload of type COOKIE and type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.6, 2.7 and 3.10.1
- [RFC 4718] Sections 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, configure the IKE_SA parameters as described as following. KEi payload must carry either D-H Group 14 public key value or D-H Group 24 public key value.

	IKE_SA Algorithms			
	Encryption PRF Integrity D-H Gro			D-H Group
Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM
NUT T	N1
(SGW) (S	GGW)
İ	
	(Packet #1)
i i	IKE_SA_INIT response (HDR, N(INVALID_KE_PAYLOAD(DH#2))) (Packet #2)
>	· IKE_SA_INIT request (HDR, SAi1(DH#2, DH#14), KEi'(DH#2), Ni) or
>	IKE_SA_INIT request (HDR, N(COOKIE), SAi1(DH#2, DH#14), KEi'(DH#2), Ni) (Judgment #3)
	IKE_SA_INIT response (HDR, N(COOKIE')) (Packet #3)
>	IKE_SA_INIT request (HDR, N(COOKIE'), SAi1(DH#2, DH#14), KEi'(DH#2), Ni) (Judgment #4)
	IKE_SA_INIT response (HDR, SAr1(DH#2), KEr(DH#2), Nr) (Packet #4)
>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #5)
V	V
It is possible to us	se DH#24 instead of DH#14

Packet #1	See below
Packet #2	See below
Packet #3	See below
Packet #4	See Common Packet #2

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as the common packet #1		
UDP Header	Same as	the common packet #1	
IKEv2 Header	Other fields are same as	the common packet #1	
	Next Payload	41 (N)	
N Payload	Next Payload	0 (No Next Payload)	
	Critical	0	
	Reserved		
	Payload Length Ar		
	Protocol ID 0		
	SPI Size 0		
	Notify Message Type COOKIE (16390)		
	Notification Data	Cookie value	

Packet #2: IKE_SA_INIT response

IPv6 Header	Same as the common packet #1		
UDP Header	Same as the common packet #1		
IKEv2 Header	Other fields are same as the common packet #1		
	Next Payload	41 (N)	
N Payload	Next Payload	0 (No Next Payload)	
	Critical	0	
	Reserved	0	
	Payload Length	10	

Protocol ID	0
SPI Size	0
Notify Message Type	INVALID_KE_PAYLOAD (17)
Notification Data	The accepted D-H Group # (2)

Packet #3: IKE_SA_INIT response

IPv6 Header		Same as the common packet #1
UDP Header		Same as the common packet #1
IKEv2 Header		Other fields are same as the common packet #1
	Next Payload	41 (N)
N Payload	Next Payload 0 (No Next Payload)	
	Critical	0
	Reserved	
	Payload Length An	
	Protocol ID	
	SPI Size	0
	Notify Message Type	COOKIE (16390)
	Notification Data	Different cookie value from Packet #1's cookie value.

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type COOKIE to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID KE PAYLOAD to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response. The message has a different cookie value from the cookie value at Step3.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 responds with an IKE_SA_INIT response.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as proposed algorithms. KEi payload has D-H Group 14 public key value. Depending on configuration, it is possible to use D-H Group 24 for SA proposal and KEi payload instead of D-H Group 14.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request. The message has a Notify payload of type COOKIE with the cookie data supplied by the responder as the first payload. All other payloads are unchanged.

Step 6: Judgment #3

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. The message can have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 5.

Step 8: Judgment #4

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. The message must have a Notify payload of type COOKIE with the cookie data supplied by the responder at Step 7. All other payloads are unchanged.

Step 10: Judgment #5

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Group 1.6. Cryptographic Algorithm Negotiation

Test IKEv2.SGW.I.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part H, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA_INIT exchanges Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	DELETED	DELETED	DELETED	DELETED
Part C	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part E	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14
Part F	ENCR_3DES	PRF_HMAC_SHA2_256	AUTH_HMAC_SHA1_96	Group 2
Part G	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HAMC_SHA2_256_128	Group 2
Part H	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 24

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)
 <	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
 	 	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)</pre>

Packet #1 See Common Packet #2

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED) This test case is deleted at revision 1.0.4.

Part C: Pseudo-Random Function PRF_AES128_CBC (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 10. Observe the messages transmitted on Link B.
- 11. TN1 responds with an IKE SA INIT response to the NUT.
- 12. Observe the messages transmitted on Link B.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 13. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link B.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link B.

Part E: D-H Group Group 14 (ADVANCED)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link B.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link B.

Part F: PRF PRF_HMAC_SHA2_256 (ADVANCED)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link B.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link B.

Part G: Integrity Algorithm AUTH_HMAC_SHA2_256_128 (ADVANCED)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link B.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link B.

Part H: D-H Group Group 24 (ADVANCED)

- 29. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 30. Observe the messages transmitted on Link B.
- 31. TN1 responds with an IKE_SA_INIT response to the NUT.
- 32. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 1.

Part B

This test case is deleted at revision 1.0.4.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 9.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_AES_XCBC_96" and "D-H Group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 13.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 14" as proposed algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 17.

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA2_256", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 21.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA2_256", "AUTH_HMAC_SHA2_256_128" and "D-H Group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 25.

Part H

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 24" as proposed algorithms.

Step 32: Judgment #2

The NUT transmits an IKE_AUTH request which is cryptographically protected by the proposed algorithms in Step 29.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part G, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_AUTH exchanges Algorithms			
	Encryption Integrity Extended Sequence N			
Part A	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers	
Part B	ENCR_AES_CTR AUTH_HMAC_SHA1_96		No Extended Sequence Numbers	
Part C	ENCR_NULL	NCR_NULL AUTH_HMAC_SHA1_96 No Extended Sequen		
Part D	ENCR_3DES	AUTH_AES_XCBC_96 No Extended Sequence N		
Part E	ENCR_3DES	NONE	No Extended Sequence Numbers	
Part F	ENCR_3DES	AUTH_HMAC_SHA1_96	Extended Sequence Numbers	
Part G	ENCR_3DES	AUHT_HMAC_SHA2_256_128	No Extended Sequence Numbers	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
			I
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
			(Judgment #1)
	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	ļ	ļ	(Packet #1)
	ļ ļ	ļ.	
		>	IKE_AUTH request (HDR, SK {IDi, AUTH,
			SAi2, TSi, TSr})
			(Judgment #2)
	<		IKE_AUTH response (HDR, SK {IDr, AUTH,
			SAr2, TSi, TSr})
			(Packet #2)
<		======+	IPsec {Echo Request}
			(Packet #3) (Judgment #3)
		=====+	> IPsec {Echo Reply}
			(Packet #3) (Judgment #4)
			1
V	V	V	V

Packet #1 See Common Packet #2

Packet #2	See Common Packet #		
Packet #3	See Common Packet #21		
Packet #4	See Common Packet #25		

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 10. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 11. Observe the messages transmitted on Link B.
- 12. TN1 responds with an IKE_SA_INIT response to the NUT.
- 13. Observe the messages transmitted on Link B.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 15. TH2 transmits an Echo Request to TH1.
- 16. Observe the messages transmitted on Link A.
- 17. TH1 transmits an Echo Reply to TH2.
- 18. Observe the messages transmitted on Link B.

Part C: Encryption Algorithm ENCR_NULL (ADVANCED)

- 19. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link B.
- 21. TN1 responds with an IKE_SA_INIT response to the NUT.
- 22. Observe the messages transmitted on Link B.
- 23. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 24. TH2 transmits an Echo Request to TH1.
- 25. Observe the messages transmitted on Link A.
- 26. TH1 transmits an Echo Reply to TH2.
- 27. Observe the messages transmitted on Link B.

Part D: Integrity Algorithm AUTH AES XCBC 96 (ADVANCED)

- 28. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 29. Observe the messages transmitted on Link B.
- 30. TN1 responds with an IKE_SA_INIT response to the NUT.
- 31. Observe the messages transmitted on Link B.
- 32. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 33. TH2 transmits an Echo Request to TH1.
- 34. Observe the messages transmitted on Link A.
- 35. TH1 transmits an Echo Reply to TH2.
- 36. Observe the messages transmitted on Link B.

Part E: Integrity Algorithm NONE (ADVANCED)

- 37. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 38. Observe the messages transmitted on Link B.
- 39. TN1 responds with an IKE_SA_INIT response to the NUT.
- 40. Observe the messages transmitted on Link B.
- 41. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 42. TH2 transmits an Echo Request to TH1.
- 43. Observe the messages transmitted on Link A.
- 44. TH1 transmits an Echo Reply to TH2.
- 45. Observe the messages transmitted on Link B.

Part F: Extended Sequence Numbers (ADVANCED)

- 46. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 47. Observe the messages transmitted on Link B.
- 48. TN1 responds with an IKE_SA_INIT response to the NUT.
- 49. Observe the messages transmitted on Link B.
- 50. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 51. TH2 transmits an Echo Request to TH1.
- 52. Observe the messages transmitted on Link A.
- 53. TH1 transmits an Echo Reply to TH2.
- 54. Observe the messages transmitted on Link B.

Part G: Integrity Algorithm AUTH_HMAC_SHA2_256_128 (ADVANCED)

- 55. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 56. Observe the messages transmitted on Link B.
- 57. TN1 responds with an IKE_SA_INIT response to the NUT.
- 58. Observe the messages transmitted on Link B.
- 59. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 60. TH2 transmits an Echo Request to TH1.
- 61. Observe the messages transmitted on Link A.
- 62. TH1 transmits an Echo Reply to TH2.
- 63. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_AES_CBC",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part R

Step 11: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 13: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_AES_CTR", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #3

The NUT forwards an Echo Request.

Step 18: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part C

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_NULL", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 25: Judgment #3

The NUT forwards an Echo Request.

Step 27: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part D

Step 29: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 31: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 34: Judgment #3

The NUT forwards an Echo Request.

Step 36: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part E

Step 38: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 40: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "NONE" and "No Extended Sequence Numbers" as proposed algorithms. However, the transform indicating "NONE" can be omitted.

Step 43: Judgment #3

The NUT forwards an Echo Request.

Step 45: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part F

Step 47: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 49: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1" and "Extended Sequence Numbers" as proposed algorithms.

Step 52: Judgment #3

The NUT forwards an Echo Request.

Step 54: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part G

Step 56: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 58: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA2_256_128" and "No Extended Sequence Numbers" as proposed algorithms.

Step 61: Judgment #3

The NUT forwards an Echo Request.

Step 63: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.6.3: Sending Multiple Transforms for IKE_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_SA_INIT request with multiple transforms for IKE_SA.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

	IKE_SA_INIT exchanges Algorithms				
	Encryption	PRF	Integrity	D-H Group	
Part A	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part B	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2	
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Group 2	
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link B.

Part B: Multiple Pseudo-Random Functions (ADVANCED)

- 3. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link B.

Part C: Multiple Integrity Algorithms (ADVANCED)

5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above.

6. Observe the messages transmitted on Link B.

Part D: Multiple D-H Groups (ADVANCED)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 8. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "PRF_AES128_CBC"AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "D-H Group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as accepted algorithms. Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.6.4: Sending Multiple Proposals for IKE_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple proposals for CHILD_SA.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration.

	IKE_SA_INIT exchanges Algorithms					
	Proposal	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_ 3DES	PRF_ HMAC_SHA1	AUTH_ HMAC_SHA1_96	Group 2
	Proposal #2	IKE	ENCR_ AES_CBC	PRF_ AES128_CBC	AUTH_ AES_XCBC_96	Group 14 or Group 24

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request with 2 SA Proposals.

SA Proposal #1 (ESP) includes "ENCR_3DES", "PRF_HMAC_SHA1",

"AUTH_HMAC_SHA1_96" and "D-H Group 2".

SA Proposal #2 (ESP) includes "ENCR_AES_CBC", "PRF_AES128_CBC",

"AUTH_AES_XCBC_96" and "D-H Group 14". Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.6.5: Sending Multiple Transforms for CHILD_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple transforms for CHILD_SA.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration.

	IKE_AUTH exchanges Algorithms			
	Encryption	Integrity	ESN	
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN	
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN	
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 2. Observe the messages transmitted on Link B.
- 3. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1.
- 4. Observe the messages transmitted on Link B.

Part B: Multiple Integrity Algorithms (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 6. Observe the messages transmitted on Link B.
- 7. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1
- 8. Observe the messages transmitted on Link B.

Part C: Extended Sequecnce Numbers (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request including a SA payload as described above to the TN1.
- 10. Observe the messages transmitted on Link B.
- 11. NUT transmits an IKE_AUTH request including a SA payload as described above to the TN1
- 12. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "Extended Sequence Number" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.1.6.6: Sending Multiple Proposals for CHILD_SA

Purpose:

To verify an IKEv2 device properly transmits IKE_AUTH request with multiple proposals for CHILD_SA.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the following configuration.

	IKE_AUTH exchanges Algorithms				
	Proposal	Protocol ID	Encryption	Integrity	ESN
Part A	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part A	Proposal #2	ESP	ENCR AES CBC	AUTH AES XCBC 96	ESN

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" in SA Proposal #1 (ESP) and then "ENCR_AES_CBC", "AUTH_AES_XCBC_96" and "Extended Sequence Numbers" in SA Proposal #2 (ESP) as accepted algorithms.

Possible Problems:

• None.

645

Test IKEv2.SGW.I.1.1.6.7: Receipt of INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA response with a Notify payload of type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration with enabling PFS by proposing D-H Group 2 and D-H Group 14 when rekeying. KEi payload must carry D-H Group 14 public key value in CREATE_CHILD_SA request. It is possible to use D-H Group 24 instead of D-H Group 14.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

		FORUM		
TH1	NUT TN1	TH2		
(Host)	(SGW) (SGW)	(Host)		
	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})		
		(Packet #2)		
	 	<pre> CREATE_CHILD_SA request (HDR, SK {N, SA(DH#2, DH#14), Ni, KEi(DH#14), TSi, TSr}) (Judgment #4) CREATE_CHILD_SA response (HDR, SK, N(INVALID_KE_PAYLOAD(DH#2))})</pre>		
	; 	<pre> (Packet #5) CREATE_CHILD_SA request (HDR, SK {N, SA(DH#2, DH#14), Ni, KEi'(DH#2), TSi, TSr}) (Judgment #5) </pre>		
N: REKEY_SA It is possible to use DH#24 instead of DH#14.				

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below

Packet #5: CREATE_CHILD_SA response

IPv6 Header		Same as Common Packet #16
UDP Header		Same as Common Packet #16
IKEv2 Header		Same as Common Packet #16
E Payload		Same as Common Packet #16
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	10
	Protocol ID	0
	SPI Size	0
	Notify Message Type	INVALID_KE_PAYLOAD (17)
	Notification Data	The accepted D-H Group # (2)

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TN1 transmits an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. Repeat Steps 6 and 7 until lifetime of SA is expired.
- 9. Observe the messages transmitted on Link B.
- 10. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT.
- 11. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an Echo Reply with IPsec ESP using corresponding algorithms.

Step 9: Judgment #4

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers", "D-H Group 2" and "D-H Group 14" as proposed algorithms. KEi payload must carry "D-H Group 14" public key value. Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD SA's SPI value in the SPI field.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers", "D-H Group 2" and "D-H Group 14" as proposed algorithms and a Key Exchange payload which contains "D-H Group 2" public key value.

Possible Problems:

Test IKEv2.SGW.I.1.1.6.8: Receipt of NO_PROPOSAL_CHOSEN

This test case was deleted at revision 1.1.0.

Test IKEv2.SGW.I.1.1.6.9: Response with inconsistent SA proposal for IKE_SA

Purpose:

To verify an IKEv2 device properly handles a response with a SA payload which is inconsistent with one of its proposals.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1

See below

Packet #1: IKE_SA_INIT response

IPv6 Header	Same as the Common Packet #2
UDP Header	Same as the Common Packet #2
IKEv2 Header	Same as the Common Packet #2
SA Payload	See below
KEi Payload	Same as the Common Packet #2
Ni Payload	Same as the Common Packet #2

SA Payload	Next Payload			34 (KE)
	Critical			0
	Reserved			0
	Payload Leng	gth		44
	Proposal #1	SA Proposal	Next Payload	0 (last)
		_	Reserved	0
			Proposal Length	40
			Proposal #	1
			Protocol ID	1 (IKE)
			SPI Size	0
			# of Transforms	4

	SA Transform		See below
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	2 (PRF)
		Reserved	0
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)

SA Transform	Next Payload		3 (more)
	Reserved		0
	Transform Lengt	:h	12
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT. But the response includes a SA payload which has a different Transform ID from the proposed one.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT never transmits an IKE_AUTH request.

Possible Problems:

• Step 4
The NUT may transmit or retransmit an IKE_SA_INIT request.

Test IKEv2.SGW.I.1.1.6.10: Response with inconsistent proposal for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles a response with a SA payload which is inconsistent with one of its proposals.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	·> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	 < 	 	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	 	 	IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4) V

Packet #1 See Common Packet #2
Packet #2 See below
Packet #3 See Common Packet #21
Packet #4 See Common Packet #25

Packet #2: IKE_AUTH response

IPv6 Header	Same as the Common Packet #6
UDP Header	Same as the Common Packet #6
IKEv2 Header	Same as the Common Packet #6

E Payload	Same as the Common Packet #6
IDr Payload	Same as the Common Packet #6
AUTH Payload	Same as the Common Packet #6
N Payload	Same as the Common Packet #6
SA Payload	See below
TSi Payload	Same as the Common Packet #6
TSr Payload	Same as the Common Packet #6

SA Payload	Next Payload				44 (TSi)
	Critical			0	
	Reserved				0
	Payload Length			44	
	Proposal #1	SA Proposal	Next Payload		0 (last)
			Reserved		0
			Proposal Length	1	40
			Proposal #		1
			Protocol ID		3 (ESP)
			SPI Size		4
			# of Transforms	3	3
			SA Transform		See below
			SA Transform	Next Payload	3 (more)
				Reserved	0
				Transform Length	8
				Transform Type	3 (INTEG)
				Reserved	0
				Transform ID	2 (HMAC_SHA1_96)
			SA Transform	Next Payload	0 (last)
				Reserved	0
				Transform Length	8
				Transform Type	5 (Extended Sequence Number)
				Reserved	0
				Transform ID	0 (No Extended Sequence Number)

SA Transform	Next Payload		3 (more)
	Reserved		0
	Transform Lengt	:h	12
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 responds with an IKE_AUTH response to the NUT. But the response includes a SA payload which has a different Transform ID from the proposed one.
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_AES_CBC","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT never forwards an Echo Request.

Step 9: Judgment #4

The NUT never forwards an Echo Reply with IPsec ESP using ENCR_AES_CBC and AUTH_HMAC_SHA1_96.

Possible Problems:

Step 7 The NUT may transmit or retransmit an IKE_AUTH request. And the NUT may notify INVALID_SPI.

Test IKEv2.SGW.I.1.1.6.11: Receipt of INVALID_KE_PAYLOAD in Initial Exchange

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT response with a Notify payload of type INVALID_KE_PAYLOAD.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, configure the IKE_SA parameters as described as following. KEi payload must carry D-H Group 14 public key value.

	IKE_SA Algorithms			
	Encryption	PRF	Integrity	D-H Group
Part A	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

|--|

Packet #1: IKE_SA_INIT response

IPv6 Header		Same as Common Packet #2
UDP Header		Same as Common Packet #2
IKEv2 Header		Same as Common Packet #2
	IKE_SA Responder's SPI	See each Part
N Payload	Next Payload	0 (No Next Payload)

Critical	0
Reserved	0
Payload Length	10
Protocol ID	0
SPI Size	0
Notify Message Type	INVALID_KE_PAYLOAD (17)
Notification Data	The accepted D-H Group # (2)

Part A: IKE_SA Responder's SPI is zero (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT. The message's IKE_SA Responder's SPI is set to zero.
- 4. Observe the messages transmitted on Link A.

Part B: IKE_SA Responder's SPI is not zero (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD containing 2 (1024 Bit MODP) as Notification Data to the NUT. The message's IKE_SA Responder's SPI is set to one.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as proposed algorithms. KEi payload must carry "D-H Group 14" public key value. Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. All other payloads are unchanged.

Part B

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including

"ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as proposed algorithms. KEi payload must carry "D-H Group 14" public key value. Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT request including a Key Exchange payload which contains "D-H Group 2" public key value. All other payloads are unchanged.

Possible Problems:

Test IKEv2.SGW.I.1.1.6.12: Creating an IKE_SA without a CHILD_SA

Purpose:

To verify an IKEv2 device can handles a failure of creating a CHILD_SA during the IKE_AUTH exchange.

References:

• [RFC 4718] - Sections 4.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)	
	> IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
	(Judgment #1)	
<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
	(Packet #1)	
	> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})	
	(Judgment #2)	
<	IKE_AUTH response (HDR, SK {IDr, AUTH, N(NO_PROPOSAL_CHOSEN)})	
	(Packet #2)	
<	INFORMATIONAL request (HDR, SK {})	
	(Packet #3)	
	> INFORMATIONAL response (HDR, SK {})	
	(Judgment #3)	
V	V	

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #17

Packet #4: IKE_AUTH response

10 111 response		
IPv6 Header		Same as Common Packet #6
UDP Header		Same as Common Packet #6
IKEv2 Header		Same as Common Packet #6
E Payload		Same as Common Packet #6
IDr Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	24
	ID Type	IPV6 ADDR

	Reserved	0
	Identification Data	TN1's Global Address on Link X
AUTH Payload	Next Payload	41 (N)
	Critical	0
	Reserved	0
	Payload Length	any
	Auth Method	2 (SK_MIC)
	Reserved	0
	Authentication Data	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	0
	SPI Size	0
	Notify Message Type	NO_PROPOSAL_CHOSEN (14)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response with a Notify payload of type NO_PROPOSAL_CHOSEN to the NUT.
- 6. TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Group 1.7. Traffic Selector Negotiation

Test IKEv2.SGW.I.1.1.7.1: Narrowing the range of members of the set of traffic selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

• [RFC4306] - Section 2.9

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2	TH3	
(Host)	(SGW)	(SGW)	(Host)	(Host)	
	 	 > 	 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	 < 	 		(Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, N	r)
	 	 > 		(Packet #1) IKE_AUTH request (HDR, SK {IDi, A	
	 < 	 		(Judgment #2) IKE_AUTH response (HDR, SK {IDr, SAr2, TSi, TSr} (Packet #2)	
	 	 =====+ 	 > 	IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)	
X	 ====== 	 =====+ 	 	 IPsec {Echo Request} (Packet #5) (Judgment #5) > IPsec {Echo Request}	
l V	l I V	 	 	(Packet #6) (Judgment #6) 	

Packet #1 See Common Packet #2

Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below·

Packet #5: ICMPv6 Echo Request

IPv6 Header	San	ne as Common Packet #21
ESP	San	ne as Common Packet #21
IPv6 Header	Source Address	TH3's Global Address
	Other fields are same as Common Packet #21	
ICMPv6 Header	San	ne as Common Packet #21

Packet #6: ICMPv6 Echo Reply

IPv6 Header	Source Address	TH1's Global Address
	Destination Address	TH3's Global Address
ICMPv6 Header	Same as Common Packet #25	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TH2 transmits an Echo Request packet to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply packet to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. TH3 transmits an Echo Request to TH1.
- 11. Observe the messages transmitted on Link A.
- 12. TH1 transmits an Echo Request to TH3.
- 13. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Request with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT never forwards an Echo Request.

Step 13: Judgment #6

The NUT forwards an Echo Request without IPsec ESP.

Possible Problems:

Group 1.8. Error Handling

Test IKEv2.SGW.I.1.1.8.1: INVALID_IKE_SPI

This test case was deleted at revision 1.1.0.

Test IKEv2.SGW.I.1.1.8.2: INVALID_SELECTORS

This test case was deleted at revision 1.1.0.

Group 1.10 Authentication of the IKE_SA

Test IKEv2.SGW.I.1.1.10.1: Sending CERT Payload

Purpose:

To verify an IKEv2 device handles CERTREQ payload and transmits CERT payload properly.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Land	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	NUT's global address on Link A
Local	Part B	X.509 Certificate - Signature	ID_FQDN	nut.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	nut@example.com

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
-----------	-----------

Packet #1: IKE_SA_INIT response

IPv6 Header		Same as the C	Common Packet #2
UDP Header		Same as the C	Common Packet #2
IKEv2 Header		Same as the C	Common Packet #2
SA Payload		Same as the C	Common Packet #2
KE Payload		Same as the Common Packet #2	
Nr Payload	Next Payload		38 (CERTREQ)

	Other fields are same as the Common Packet #2
CERTREQ Payload	See below

CERTREQ Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Authority	any

Part A: ID IPV6 ADDR (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT request from the NUT, TN1 responds with an IKE SA INIT response with a CERTREQ payload to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request. The request includes an ID payload with ID_IPV6_ADDR and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request. The request includes an ID payload with ID_FQDN and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request. The request includes an ID payload with ID_RFC822_ADDR and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Possible Problems:

Test IKEv2.SGW.I.1.1.10.2: Sending CERTREQ Payload

Purpose:

To verify an IKEv2 device transmits CERTREQ payload and handles CERT payload properly.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Domoto	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	TN1's global address on Link A
Remote	Part B	X.509 Certificate - Signature	ID_FQDN	tn.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	tn@example.com

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: ID_IPV6_ADDR (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: ID_FQDN (ADVANCED)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 responds with an IKE_SA_INIT response to the NUT.

8. Observe the messages transmitted on Link A.

Part C: ID_RFC822_ADDR (ADVANCED)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.10.3: RSA Digital Signature

Purpose:

To verify an IKEv2 device authenticates the corresponding node by RSA Digital Signature.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Remote	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	TN1's global address on Link A
Kemote	Part B	X.509 Certificate - Signature	ID_FQDN	tn.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	tn@example.com

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
1	1		
1		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1	1		(Judgment #1)
	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
1	1		(Packet #1)
1	1		
I		>	IKE_AUTH request (HDR, SK {IDi, CERTREQ, AUTH,
1	1		SAi2, TSi, TSr})
I	1		(Judgment #2)
I	<		IKE_AUTH response (HDR, SK {IDr, CERT, AUTH,
I	1		SAr2, TSi, TSr})
I	1		(Packet #2)
	1		
<		======+	IPsec {Echo Request}
I	1		(Packet #3) (Judgment #3)
		======+	> IPsec {Echo Reply}
I	I		(Packet #4) (Judgment #4)
I	1		
V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #19

IPv6 Header		Same as Common Packet #6		
UDP Header		Same as Common Packet #6		
IKEv2 Header		Same as Common Packet #6		
E Payload		Same as Common Packet #6		
IDr Payload	Next Payload	37 (CERT)		
	Other fields are	re same as the Common Packet #6		
CERT Payload		See below		
AUTH Payload		Same as Common Packet #6		
SA Payload	Same as Common Packet #6			
TSi Payload	Same as Common Packet #6			
TSr Payload	Same as Common Packet #6			

CERT Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Data	TN1's X.509 Certificate

Part A: ID_IPV6_ADDR (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response including an IDr payload as described above and a CERT payload to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.

Part B: ID_FQDN (ADVANCED)

- 10. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 responds with an IKE SA INIT response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response including an IDr payload as described above and a CERT payload to the NUT
- 15. TH2 transmits an Echo Request to TH1.
- 16. Observe the messages transmitted on Link B.
- 17. TH1 transmits an Echo Reply to TH2.
- 18. Observe the messages transmitted on Link A.

Part C: ID_RFC822_ADDR (ADVANCED)

- 19. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. TN1 responds with an IKE_SA_INIT response to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response including an IDr payload as described above and a CERT payload to the NUT
- 24. TH2 transmits an Echo Request to TH1.
- 25. Observe the messages transmitted on Link B.
- 26. TH1 transmits an Echo Reply to TH2.
- 27. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Part B

Step 11: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 13: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Step 16: Judgment #3

The NUT forwards an Echo Request.

Step 18: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Part C

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH request with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Step 25: Judgment #3

The NUT forwards an Echo Request.

Step 27: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH HMAC SHA1 96.

Possible Problems:

Test IKEv2.SGW.I.1.1.10.4: HEX string PSK

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 2.15

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Key Value
Remote	Oxabadcafeabadcafeabadcafe (128 bit binary string)

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Group 1.11 Invalid values

Test IKEv2.SGW.I.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2	
	All RESERVED fields are set to one.	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response whose RESERVED fields are set to one to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.SGW.I.1.1.11.2: Non zero RESERVED fields in IKE_AUTH response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	ļ	ļ.	
!		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
I I		l I	(Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
į			(Packet #1)
		>	 IKE_AUTH request (HDR, SK {IDi, AUTH,
ļ	ļ	ļ.	SAi2, TSi, TSr})
!			(Judgment #2)
	<		IKE_AUTH response (HDR, SK {IDr, AUTH,
l I	l I	l I	SAr2, TSi, TSr})
i	ļ ļ	l I	(1 doket #2)
<	' +=======	' ======+	IPsec {Echo Request}
į			(Packet #3) (Judgment #3)
	· +======	======+	> IPsec {Echo Reply}
			(Packet #4) (Judgment #4)
			1
V	V	V	V

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #6	
	All RESERVED fields are set to one.	
Packet #3	See Common Packet #21	
Packet #4	See Common Packet #25	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE AUTH request from the NUT, TN1 responds with an IKE AUTH

response whose RESERVED fields are set to one to the NUT

- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.11.3: Version bit is set

Purpose:

To verify an IKEv2 device ignores the content of Version bit in IKE messages.

References:

• [RFC 4306] - Sections 3.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #2	
	Version bit is set to one.	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response whose Version bit is set to one to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

Test IKEv2.SGW.I.1.1.11.4: Unrecognized Notify Message Type of Error

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type intended for reporting error.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2		
(Host)	(SGW)	(SGW)	(Host)		
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)		
I			(Judgment #1)		
I	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)		
			(Packet #1)		
		>	IKE_AUTH request (HDR, SK {IDi, AUTH,		
			SAi2, TSi, TSr})		
I			(Judgment #2)		
I	<		IKE_AUTH response (HDR, SK {IDr, AUTH,		
I			SAr2, TSi, TSr, N})		
			(Packet #2)		
ı	X	=====+	IPsec {Echo Request}		
		l	(Packet #3) (Judgment #3)		
	· +========	======+			
		ļ	(Packet #4) (Judgment #4)		
V	V	V	V		
N: Notify	Payload with unre	cognized Notify	/ Message Type		

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Packet #2: IKE_AUTH request

IPv6 Header	All fields are same as Common Packet #6
UDP Header	All fields are same as Common Packet #6

IKEv2 Header	All fields are same as Commo	on Packet #6	
E Payload	All fields are same as Commo	on Packet #6	
IDr Payload	All fields are same as Commo	on Packet #6	
AUTH Payload	All fields are same as Commo	on Packet #6	
SA Payload	All fields are same as Commo	on Packet #6	
TSi Payload	All fields are same as Commo	on Packet #6	
TSr paylaod	Next Payload	41 (Notify)	
	Other fields are same as Commo	on Packet #6	
N Payload	Next Payload	0	
	Critical	0	
	Reserved 0		
	Payload Length 8		
	Procotol ID 0		
	SPI Size 0		
	Notify Message Type	16383	

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response with a Notify payload of unrecognized Notify Message Type value.
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT never forwards an Echo Request.

Step 9: Judgment #4

The NUT never forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

None.

Test IKEv2.SGW.I.1.1.11.5: Unrecognized Notify Message Type of Status

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type intended for reporting status.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
1			
1		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1			(Judgment #1)
1	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
1			(Packet #1)
1			
1		>	IKE_AUTH request (HDR, SK {IDi, AUTH,
1			SAi2, TSi, TSr})
1			(Judgment #2)
1	<		IKE_AUTH response (HDR, SK {IDr, AUTH,
1			SAr2, TSi, TSr, N})
1			(Packet #2)
I			
<		=====+	IPsec {Echo Request}
I			(Packet #3) (Judgment #3)
		=====+	> IPsec {Echo Reply}
			(Packet #4) (Judgment #4)
V	V	V	V
N: Notify F	Payload with unred	cognized Notify	/ Message Type

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Packet #2: IKE_AUTH request

IPv6 Header	All fields are same as Common Packet #6
UDP Header	All fields are same as Common Packet #6

IKEv2 Header	All fields are same as Commo	on Packet #6		
E Payload	All fields are same as Commo	on Packet #6		
IDr Payload	All fields are same as Commo	on Packet #6		
AUTH Payload	All fields are same as Commo	on Packet #6		
SA Payload	All fields are same as Commo	on Packet #6		
TSi Payload	All fields are same as Commo	on Packet #6		
TSr paylaod	Next Payload	41 (Notify)		
	Other fields are same as Commo	on Packet #6		
N Payload	Next Payload	0		
	Critical 0			
	Reserved 0			
	Payload Length 8			
	Procotol ID 0			
	SPI Size 0			
	Notify Message Type	65535		

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response with a Notify payload of unrecognized Notify Message Type value.
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT never forwards an Echo Request.

Step 9: Judgment #4

The NUT never forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

None.

Group 2. The CREATE_CHILD_SA Exchange

Group 2.1. Header and Payload Formats

Test IKEv2.SGW.I.1.2.1.1: Sending CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device transmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

685

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
	< 	 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
::		 	
<		 	Packet #3) (Judgment #3) repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA
'			
	 V	> 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) V
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link B.

Part B: Encrypted Payload Format (BASIC)

- 12. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 13. Observe the messages transmitted on Link B.
- 14. TN1 responds with an IKE_SA_INIT response to the NUT.
- 15. Observe the messages transmitted on Link B.
- 16. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 17. TH2 transmits an Echo Request to TH1.
- 18. Observe the messages transmitted on Link A.

- 19. TH1 transmits an Echo Reply to TH2.
- 20. Observe the messages transmitted on Link B.
- 21. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 22. Observe the messages transmitted on Link B.

Part C: Notify Payload (REKEY_SA) Format (BASIC)

- 23. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 24. Observe the messages transmitted on Link B.
- 25. TN1 responds with an IKE_SA_INIT response to the NUT.
- 26. Observe the messages transmitted on Link B.
- 27. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 28. TH2 transmits an Echo Request to TH1.
- 29. Observe the messages transmitted on Link A.
- 30. TH1 transmits an Echo Reply to TH2.
- 31. Observe the messages transmitted on Link B.
- 32. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 33. Observe the messages transmitted on Link B.

Part D: SA Payload Format (BASIC)

- 34. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 35. Observe the messages transmitted on Link B.
- 36. TN1 responds with an IKE_SA_INIT response to the NUT.
- 37. Observe the messages transmitted on Link B.
- 38. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 39. TH2 transmits an Echo Request to TH1.
- 40. Observe the messages transmitted on Link A.
- 41. TH1 transmits an Echo Reply to TH2.
- 42. Observe the messages transmitted on Link B.
- 43. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 44. Observe the messages transmitted on Link B.

Part E: Nonce Payload Format (BASIC)

- 45. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 46. Observe the messages transmitted on Link B.
- 47. TN1 responds with an IKE_SA_INIT response to the NUT.
- 48. Observe the messages transmitted on Link B.
- 49. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 50. TH2 transmits an Echo Request to TH1.
- 51. Observe the messages transmitted on Link A.
- 52. TH1 transmits an Echo Reply to TH2.
- 53. Observe the messages transmitted on Link B.
- 54. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 55. Observe the messages transmitted on Link B.

Part F: TSi Payload Format (BASIC)

- 56. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 57. Observe the messages transmitted on Link B.
- 58. TN1 responds with an IKE SA INIT response to the NUT.
- 59. Observe the messages transmitted on Link B.
- 60. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH

response to the NUT

- 61. TH2 transmits an Echo Request to TH1.
- 62. Observe the messages transmitted on Link A.
- 63. TH1 transmits an Echo Reply to TH2.
- 64. Observe the messages transmitted on Link B.
- 65. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 66. Observe the messages transmitted on Link B.

Part G: TSr Payload Format (BASIC)

- 67. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 68. Observe the messages transmitted on Link B.
- 69. TN1 responds with an IKE_SA_INIT response to the NUT.
- 70. Observe the messages transmitted on Link B.
- 71. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 72. TH2 transmits an Echo Request to TH1.
- 73. Observe the messages transmitted on Link A.
- 74. TH1 transmits an Echo Reply to TH2.
- 75. Observe the messages transmitted on Link B.
- 76. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 77. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted IKE Header containing following values:

Figure 116 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to CREATE_CHILD_SA (36).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to the value incremented the previous IKE message's Message ID by one.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 13: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 15: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 18: Judgment #3

The NUT forwards an Echo Request.

Step 20: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 22: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted Encrypted Payload containing following values:

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
! Next Payload !C! RESERVED ! Payload Length !
+-
! Initialization Vector !
! (length is block size for encryption algorithm) !
+-
~ Encrypted IKE Payloads ~
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
! Padding (0-255 octets) !
+-+-+-+-+-+
! Pad Length !
+-
~ Integrity Checksum Data ~
+-

Figure 117 Encrypted payload

- A Next Payload field set to N Payload (41).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 24: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 26: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 29: Judgment #3

The NUT forwards an Echo Request.

Step 31: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 33: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted Notify Payload containing following values:

Figure 118 Notify Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 12 bytes for this REKEY_SA.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to the size of CHILD_SA Inbound SPI value to be rekeyed. It is 4 bytes for ESP.
- A Notify Message Type field set to REKEY_SA (16393).
- A Security Parameter Index field set to SPI value to be rekeyed.
- A Notification Data field is empty.

Part D

Step 35: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 37: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 40: Judgment #3

The NUT forwards an Echo Request.

Step 42: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 44: Judgment #5

					FUKUM				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -		
	! Next	44	!0!	0	! Length	40	!		
	+-+-+-+	+-+	-+-+-+-		+-+-+-+-+-+-+		-+-+-+-+ -		
	! 0	•	!	0	! Length	36	!	!	!
					+-+-+-+-+-+-+-+			1	
	! Number	1	! PIOL	טו טו	! SPI Size 4	! ITans	CHL 3!	1	1
	! SPI val	 IIE					 	 	
	+-+-+-+	+-+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		i
1	! 3	3	!	0	! Length	8	!	i	i
Transform	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+	İ	SA Payloa
1	! Type 1	(EN)	!	0	! Transform ID	3	(3DES) !	Proposal	
	+-+-+-+	+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		
_ !	! 3		!	0	! Length	8	!	!	!
Transform					+-+-+-+-+-+-+-+-+		-+-+-+-+		!
I	! Type 3	3 (IN)			! Transform ID +-+-+-+		(SHA1) !		1
1	! ()	 	0	! Length	8	 	 	
Transform	•		-+-+-+-		: Longtn +-+-+-+-+-+	-	· -+-+-+-+		
	! Type 5				! Transform ID	0	(No) !	i	i
	+-+-+-+	+-+-+	, -+-+-+-	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -	· ·	

Figure 119 SA Payload contents

The NUT transmits a CREATE_CHILD_SA request including properly formatted SA Payload containing following values (refer following figures):

Figure 120 SA Payload format

- A Next Payload field set to Ni Payload (40).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 121 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 122 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.

- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part E

Step 46: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 48: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 51: Judgment #3

The NUT forwards an Echo Request.

Step 53: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 55: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted Nonce Payload containing following values:

Figure 123 Nonce Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Nonce Data field set to random data generated by the transmitting entity.
- The size of the Nonce must between 16 and 256 octets.

Part F

Step 57: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 59: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 62: Judgment #3

The NUT forwards an Echo Request.

Step 64: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 66: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted TSi Payload containing following values:

Figure 124 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 125 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- A Ending Address field set to greater that or equal to Prefix B.

Part G

Step 68: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 70: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 73: Judgment #3

The NUT forwards an Echo Request.

Step 75: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 77: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including properly formatted TSr Payload containing following values:

	, 0	TOM	
	1	2	3
0123456789	9012345	6 7 8 9 0 1 2 3 4 5 6 7	8 9 0 1
+-+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+	-+-+-+
! Next Payload !C!	RESERVED	! Payload Length	!
+-+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+	-+-+-+
! Number of TSs !		RESERVED	!
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-+	-+-+-+
!			!
~	<traffic< td=""><td>Selectors></td><td>~</td></traffic<>	Selectors>	~
!			!
+-+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-+-+-+-+-+-+-+-+	-+-+-+

Figure 126 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 127 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix Y.
- An Ending Address field set to less than or equal to Prefix Y.

Possible Problems:

- Because the destination address of Echo Request is the TN itself, TN may respond to
 Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of
 sending Echo Request.
- The implementation may use different SA lifetimes by the implementation policy. In

that case, the tester must change the expiration time to wait CREATE_CHILD_SA request.

• CREATE_CHILD_SA request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
[N(REKEY_SA)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, Ni, [KEi], TSi, TSr
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- Each of transforms can be located in the any order.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

Group 2.2. Use of Retransmission Timers

Test IKEv2.SGW.I.1.2.2.1: Retransmissions of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device retransmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
 	 <	 > 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	 > 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
 V	 	 > 	<pre>* wait for the event of a timeout CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #6) V</pre>
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH1 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link B.
- 12. TN1 waits for the event of a timeout on NUT.
- 13. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 13: Judgment #6

The NUT retransmits a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

- Each NUT has the different lifetime of SA.
- Each NUT has the different retransmission timers.

Test IKEv2.SGW.I.1.2.2.2: Stop of retransmission of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device stops retransmission when it receives the corresponding response.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1		TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 		IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	Ì	(Packet #3) (Judgment #3) until lifetime of SA
	 	 -> 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) * wait for the event of a timeout
		 -> 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #6)
	 < 	 	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
			* wait for the event of a timeout
	X 		never send CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #7)
V	 	l V	(Jaagilient #7)
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Request to TH2.
- 9. Observe the messages transmitted on Link B.

- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link B.
- 12. TN1 waits for the event of a timeout on NUT.
- 13. Observe the messages transmitted on Link B.
- 14. TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 15. TN1 waits for the event of a timeout on NUT.
- 16. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 13: Judgment #6

The NUT retransmits a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Step 16: Judgment #7

The NUT stops the retransmissions of a CREATE_CHILD_SA request which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Possible Problems:

- Each NUT has the different lifetime of SA.
- Each NUT has the different retransmission timers.

Group 2.3. Rekeying CHILD_SA Using a CREATE_CHILD_SA exchange

Test IKEv2.SGW.I.1.2.3.1: Close the replaced CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	> 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	.'. 	
	 	 > 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 		CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
	 	> 	INFORMATIONAL request (HDR, SK {D}) (Judgment #6) V
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.2: Use of the new CHILD_SA

Purpose:

To verify an IKEv2 device properly rekeys CHILD_SA

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 		IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 < 	 	 ======+ =======+ 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
		>	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 		CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
	 <		INFORMATIONAL request (HDR, SK {D}) (Judgment #6) INFORMATIONAL response (HDR, SK {D}) (Packet #6)
	 	 ======+ 	IPsec {Echo Request} (Packet #7) (Judgment #7) > IPsec {Echo Request} (Packet #8) (Judgment #8)
N: REKEY_SA		·	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16
Packet #6	See below
Packet #7	See Common Packet #21
	This packet is cryptographically protected by
	the CHILD_SA negotiated at Step 11.
Packet #8	See Common Packet #25

Packet #6: INFORMATIONAL response

1 deket ne		esponse
IPv6 Header	Source Address TN1's Global Address of	
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any

1		
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 15. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 16. Observe the messages transmitted on Link B.
- 17. TH1 transmits an Echo Response to the TH2.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 16: Judgment #7

The NUT forwards an Echo Request to the TH1.

Step 18: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.3: Lifetime of CHILD_SA expires

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	1		
		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	1		(Judgment #1)
	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	1		(Packet #1)
	1		
		>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	1		(Judgment #2)
	<		IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	1		(Packet #2)
	1		
<		======+	IPsec {Echo Request}
	1		(Packet #3) (Judgment #3)
		=====+	> IPsec {Echo Reply}
	1		(Packet #4) (Judgment #4)
			* wait for the event of a timeout of CHILD_SA
!	I		
X-	-	:======+	IPsec {Echo Request}
!	1	. !	(Packet #5) (Judgment #5)
	X	i į	IPsec {Echo Reply}
!	į	ļ .	(Packet #6) (Judgment #6)
	Ţ	Ţ	
	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #21

Packet #6 See Common Packet #25

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Request to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. TN1 waits for the event of a timeout on the NUT.
- 11. After timeout of CHILD_SA on the NUT, TH2 transmits an Echo Request to the TH1.
- 12. Observe the messages transmitted on Link A.
- 13. TH1 transmits an Echo Request to TH2.
- 14. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 12: Judgment #5

The NUT does not forward an Echo Request.

Step 14: Judgment #6

The NUT does not forward an Echo Reply with IPsec ESP using already expired CHILD_SA.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.4: Sending Multiple Transform

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

	CREATE_CHILD_SA exchanges Algorithms			
	Encryption	Integrity	ESN	
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN	
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN	
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN ESN	

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	 < 		(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	 ======+ ======+	
	 		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) V
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link B.

Part B: Multiple Integrity Algorithms (ADVANCED)

- 12. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 13. Observe the messages transmitted on Link B.
- 14. TN1 responds with an IKE_SA_INIT response to the NUT.
- 15. Observe the messages transmitted on Link B.
- 16. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 17. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP

using the first negotiated algorithms to NUT.

- 18. Observe the messages transmitted on Link A.
- 19. TH1 transmits an Echo Reply to TH2.
- 20. Observe the messages transmitted on Link B.
- 21. Repeat Steps 17 through 20 until lifetime of SA is expired.
- 22. Observe the messages transmitted on Link B.

Part C: Multiple Extended Sequecnce Numbers (ADVANCED)

- 23. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 24. Observe the messages transmitted on Link B.
- 25. TN1 responds with an IKE_SA_INIT response to the NUT.
- 26. Observe the messages transmitted on Link B.
- 27. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 28. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 29. Observe the messages transmitted on Link A.
- 30. TH1 transmits an Echo Reply to TH2.
- 31. Observe the messages transmitted on Link B.
- 32. Repeat Steps 28 through 31 until lifetime of SA is expired.
- 33. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Part B

Step 13: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 15: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 18: Judgment #3

The NUT forwards an Echo Request.

Step 20: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 22: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Part C

Step 24: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 26: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 29: Judgment #3

The NUT forwards an Echo Request.

Step 31: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 33: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.5: Sending Multiple Proposal

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple proposals to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following configuration:

		CREATE_CHILD_SA exchanges Algorithms			
	Proposal	Protocol ID	Encryption	Integrity	ESN
Dowt A	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part A	Proposal #2	ESP	ENCR_AES_CBC	AUTH_AES_XCBC_96	ESN

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
		IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
 		 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
N: REKEY_SA		

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" in SA Proposal #1 (ESP) and then "ENCR_AES_CBC", "AUTH_AES_XCBC_96" and "Extended Sequence Numbers" in SA Proposal #2 (ESP) as accepted algorithms.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.3.6: Rekeying Failure

Purpose:

To verify an IKEv2 device properly handles rekeying failure.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 30 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
	 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	1	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
 	 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}) (Packet #5)
 	 X 	INFORMATIONAL request (HDR, SK { }) (Packet #6) INFORMATIONAL response (HDR, SK { }) (Judgment #6)
	Packet #1	See Common Packet #2

Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #15
Packet #6	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to the NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying IKE_SA from the NUT, TN1 rejects the NUT's proposal. TN1 responds with a CREATE_CHILD_SA response with a Notify of type NO_PROPOSAL_CHOSEN.
- 13. TN1 trasnmits an INFORMATIONAL request for liveness check to the NUT.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request for rekeying IKE_SA. The request includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #6

The NUT never responds with an INFORMATIONAL response to an INFORMATIONAL request.

Possible Problems:

Test IKEv2.SGW.I.1.2.3.7: Perfect Forward Secrecy

Purpose:

To verify an IKEv2 device properly rekeys CHILD_SA when Perfect Forward Secrecy enables.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds. Enable PFS.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	FORUM TH2
(Host)	(SGW)	(SGW)	(Host)
(11051)	(36w)	(3011)	(11051)
	 <		IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 <		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 < 	1	 	
		>	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 		CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
	 <	 > 	INFORMATIONAL request (HDR, SK {D}) (Judgment #6) INFORMATIONAL response (HDR, SK {D}) (Packet #6)
 < 	İ	 	(Packet #7) (Judgment #7)
N: REKEY_SA	v	v	•

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #21
	This packet is cryptographically protected by the
	CHILD_SA negotiated at Step 11.
Packet #8	See Common Packet #25

Packet #5: CREATE_CHILD_SA response

IPv6 Header	Same as the Common Packet #16
UDP Header	Same as the Common Packet #16
IKEv2 Header	Same as the Common Packet #16
E Payload	Same as the Common Packet #16
N Payload	Same as the Common Packet #16
N	Same as the Common Packet #16

SA	Same as the Common	Packet #16
Nr	Next Payload	34 (KE)
KEr	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
TSi	Same as the Common	Packet #16
TSr	Same as the Common	Packet #16

Packet #6: INFORMATIONAL response

IPv6 Header		Same as the Common Packet #18	
UDP Header		Same as the Common Packet #18	
IKEv2 Header		Same as the Common Packet #18	
E Payload	Other fields	are same as the Common Packet #18	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical 0		
	Reserved 0		
	Payload Length	12	
	Procotol ID	3 (ESP)	
	SPI Size 4		
	# of SPIs	1	
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange	

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response with a Delete payload to the NUT.
- 15. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the newly negotiated algorithms to NUT.
- 16. Observe the messages transmitted on Link B.
- 17. TH1 transmits an Echo Response to the TH2.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Step 16: Judgment #7

The NUT forwards an Echo Request to the TH1.

Step 18: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using the second negotitated algorithms.

Possible Problems:

Test IKEv2.SGW.I.1.2.3.8: Use of the old CHILD_SA

Purpose:

To verify an IKEv2 device properly handles new CHILD_SA and old CHILD_SA

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
	 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
 < 		IPsec {Echo Request} (old CHILD_SA) (Packet #6) (Judgment #6) IPsec {Echo Request} (old CHILD_SA or new CHILD_SA) (Packet #7) (Judgment #7)

	7 0110111
Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16
Packet #6	See Common Packet #21
	This packet is cryptographically protected by
	the CHILD_SA negotiated at Step 5.
Packet #7	See Common Packet #25

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. TH2 transmits an Echo Request to the TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms again.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Response to the TH2.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 14: Judgment #6

The NUT forwards an Echo Request to the TH1.

Step 16: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP. The NUT can use both the first CHILD_SA and the new CHILD_SA.

Possible Problems:

Group 2.4. Rekeying IKE_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.SGW.I.1.2.4.1: Close the replaced IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

		FORUM
TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
1 1	1 1	
l i	Í>Í	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	i i	(Judgment #1)
l i	<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i	i i	(Packet #1)
1 i	i	(
1 ;		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
1 ;		(Judgment #2)
1 ;		IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
1 1		(Packet #2)
		(1 αολοί π2)
'	1	
1		···
		, , , , , ,
	 +================================	(Packet #3) (Judgment #3) until lifetime of SA
	+==========+	7 1. 000 (2010 1.0p.)) 1.0 0.4p.1.00
1 !	[(Packet #4) (Judgment #4)
	1	
';'		•••
	1	L OPENTE CHILD ON TOWARD (UDD. OV. (CA. NIC.)
1 !	[>]	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
!	!!!!	(Judgment #5)
1 !	[<	CREATE_CHILD_SA response (HDR, SK {SA, Nr})
!	! !	(Packet #5)
!	į	
!	>	INFORMATIONAL request (HDR, SK {D})
	1	(Judgment #6)
	<	INFROMATIONAL response (HDR, SK { })
	1	(Packet #6)
<		IPsec {Echo Request}
	I I	(Packet #7) (Judgment #7)
		> IPsec {Echo Reply}
	1	(Packet #8) (Judgment #8)
	1	
V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #12
Packet #6	See Common Packet #18
Packet #7	See Common Packet #21
Packet #8	See Common Packet #25

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.

- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response to close the replaced IKE_SA.
- 15. TH2 transmits an Echo Request to TH1. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.
- 16. Observe the messages transmitted on Link A.
- 17. TH1 transmits an Echo Reply to TH2.
- 18. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE SA.

Step 16: Judgment #7

The NUT forwards an Echo Request.

Step 18: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.2: Use of the new IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

			FORUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 > 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	 	 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	 	 =====+ 	
	 <	> > 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Packet #5)
	 <	į	INFORMATIONAL request (HDR, SK {D}) (Judgment #6) INFROMATIONAL response (HDR, SK { }) (Packet #6)
	 < 	i	INFORMATIONAL request (HDR, SK {}) (Packet #7) INFORMATIONAL response (HDR, SK {}) (Judgment #7)
į v	v	V	· V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #12
Packet #6	See Common Packet #18
Packet #7	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.

- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close the replaced IKE_SA.
- 15. TN1 transmits an INFORMATIONAL request with no payloads cryptographically protected by new IKE_SA.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE_SA.

Step 16: Judgment #7

The NUT responds with an INFORMATIONAL response with no payloads cryptographically protected by the new IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.3: Lifetime of IKE_SA expires

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

NUT TN	
(SGW) (SG	W)
· ·	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1)
<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
>	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)</pre>
<	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)</pre>
· ·	INFORMATION Request (HDR, SK {}) (Packet #3)
	INFORMATIONAL response (HDR, SK {}) (Judgment #3)
	wait for the event of a timeout of IKE_SA
	INFORMATION Request (HDR, SK {}) (Packet #4)
X	INFORMATIONAL response (HDR, SK {}) (Judgment #4)
	(Guagillette #4)
V	

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #17
Packet #4	See Common Packet #17

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TN1 waits for the event of a timeout on the NUT.
- 9. After timeout of CHILD_SA on the NUT, TN1 transmits an INFORMATIONAL request with no payloads using already expired IKE_SA.
- 10. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT responds with an INFORMATIONAL response with no payloads.

Step 10: Judgment #4

The NUT does not respond with an INFORMATIONAL response with no payloads using already expired IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.4: Sending Multiple Transform

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple transforms to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

	CREATE_CHILD_SA exchanges Algorithms					
	Encryption	PRF	Integrity	D-H Group		
Part A	ENCR_3DES ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2		
Part B	ENCR_3DES	PRF_HMAC_SHA1 PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2		
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	Group 2		
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2, Group 14 or Group 24		

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
!	ļ	ļ	
!		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
!	ļ	ļ.	(Judgment #1)
!	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
!	ļ		(Packet #1)
	l		 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
1 :	1		(Judgment #2)
1 :		 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
		ļ	(Packet #2)
li	i	i	(
	1		
<	+=======	=====+	IPsec {Echo Request} repeat Echo exchange
	1		(Packet #3) (Judgment #3) until lifetime of SA
		=====+	> IPsec {Echo Reply} is expired
			(Packet #4) (Judgment #4)
	1		
.:.			•••
	ļ		L CREATE CHILD CA TATIONAL (LIDD, CIV. (CA. N.:).
		>	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
	l V	l V	(Judgment #5)
V	V	V	V

Packet #1	See Common Packet #2			
Packet #2	See Common Packet #6			
Packet #3	See Common Packet #21			
Packet #4	See Common Packet #25			

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (ADVANCED)

- 12. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an IKE SA INIT response to the NUT.
- 15. Observe the messages transmitted on Link A.
- 16. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 17. TH2 transmits an Echo Request to TH1.
- 18. Observe the messages transmitted on Link B.
- 19. TH1 transmits an Echo Reply to TH2.
- 20. Observe the messages transmitted on Link A.
- 21. Repeat Steps 17 through 20 until lifetime of SA is expired.

22. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (ADVANCED)

- 23. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 24. Observe the messages transmitted on Link A.
- 25. TN1 responds with an IKE_SA_INIT response to the NUT.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 28. TH2 transmits an Echo Request to TH1.
- 29. Observe the messages transmitted on Link B.
- 30. TH1 transmits an Echo Reply to TH2.
- 31. Observe the messages transmitted on Link A.
- 32. Repeat Steps 28 through 31 until lifetime of SA is expired.
- 33. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (ADVANCED)

- 34. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 35. Observe the messages transmitted on Link A.
- 36. TN1 responds with an IKE_SA_INIT response to the NUT.
- 37. Observe the messages transmitted on Link A.
- 38. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 39. TH2 transmits an Echo Request to TH1.
- 40. Observe the messages transmitted on Link B.
- 41. TH1 transmits an Echo Reply to TH2.
- 42. Observe the messages transmitted on Link A.
- 43. Repeat Steps 39 through 42 until lifetime of SA is expired.
- 44. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE SA's SPI value in the SPI field.

Part B

Step 13: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 15: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 18: Judgment #3

The NUT forwards an Echo Request.

Step 20: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 22: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part C

Step 24: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 26: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 29: Judgment #3

The NUT forwards an Echo Request.

Step 31: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 33: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "AUTH_AES_XCBC_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Part D

Step 35: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 37: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 40: Judgment #3

The NUT forwards an Echo Request.

Step 42: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 44: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including

"ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2" and "D-H Group 14" as proposed algorithms. Depending on configuration, it is possible to use D-H Group 24 instead of G-H group 14.

And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.5: Sending Multiple Proposal

Purpose:

To verify an IKEv2 device properly transmits CREATE_CHILD_SA request with multiple proposal to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

	CREATE_CHILD_SA exchanges Algorithms					
	Proposal	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_ 3DES	PRF_ HMAC_SHA1	AUTH_ HMAC_SHA1_96	Group 2
	Proposal #2	IKE	ENCR_ AES_CBC	PRF_ AES128_CBC	AUTH_ AES_XCBC_96	Group 14 or Group 24

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	.:. 	 ======+ 	
 	 	 > V	 CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5)

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A: Multiple Encryption Algorithms (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request with 2 SA Proposals. SA Proposal #1 (ESP) includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2". SA Proposal #2 (ESP) includes "ENCR_AES_CBC", "PRF_AES128_CBC", "AUTH_AES_XCBC_96" and "D-H Group 14". Depending on configuration, it is possible to use D-H Group 24 instead of D-H Group 14.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.6: Use of the old IKE_SA

Purpose:

To verify an IKEv2 device properly handles new IKE_SA and old IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
!	ļ		
!		>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
!	ļ		(Judgment #1)
	<		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	!		(Packet #1)
	l I		 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
			(Judgment #2)
li			IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
li	i i		(Packet #2)
l i	i	i	
<		======+	IPsec {Echo Request} repeat Echo exchange
ļ ļ	l		(Packet #3) (Judgment #3) until lifetime of SA
		======+	> IPsec {Echo Reply} is expired
	ļ		(Packet #4) (Judgment #4)
	I		
	 I		 I
		>	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
li	i		(Judgment #5)
l i	i	i	
l i	<	·i	CREATE_CHILD_SA response (HDR, SK {SA, Nr})
			(Packet #5)
!	<		INFORMATIONAL request (HDR, SK {})
!	!		(Packet #6)
!		>	INFORMATIONAL response (HDR, SK {})
	l V	l V	(Judgment #6)
V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #12
Packet #6	See Common Packet #17
	(Use old IKE_SA)

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request to rekey IKE_SA from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is encrypted by the old IKE_SA.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 14: Judgment #6

The NUT transmits an INFORMATIONAL response with no payload. The message is encrypted by the old IKE_SA.

Possible Problems:

Test IKEv2.SGW.I.1.2.4.7: Changing PRFs when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds

Configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA Rekeying Algorithms						
	Encryption	Encryption PRF Integrity D-H Group					
Part A	ENCR_3DES	PRF_AES128_XCBC	AUTH_HMAC_SHA1_96	Group 2			

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

			FORUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 	į i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
	< 	 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2) IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired
	 	 	(Packet #4) (Judgment #4) CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr})
		> 	(Packet #5) INFORMATIONAL request (HDR, SK {D}) (Judgment #6)
	< <	 	INFROMATIONAL response (HDR, SK { }) (Packet #6) INFORMATIONAL request (HDR, SK {}) (Packet #7)
 V	 V	> 	INFORMATIONAL response (HDR, SK {}) (Judgment #7)

Packet #1	See Common Packet #2	
Packet #2	See Common Packet #6	
Packet #3	See Common Packet #21	
Packet #4	See Common Packet #25	
Packet #5	See below	
Packet #6	See Common Packet #18	
Packet #7	See Common Packet #17	

Packet #5: CREATE_CHILD_SA response

Packet #5 is same as Common Packet #12 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

	J I	
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	4 (PRF AES128 XCBC)

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with an INFORMATIONAL response to an INFORMATIONAL request to close the replaced IKE SA.
- 15. TN1 transmits an INFORMATIONAL request with no payloads cryptographically protected by new IKE_SA.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "PRF_AES128_XCBC", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload to close the replaced IKE_SA.

Step 16: Judgment #7

The NUT responds with an INFORMATIONAL response with no payloads cryptographically protected by the new IKE_SA.

Possible Problems:

Group 2.5. Creating New CHILD_SAs with the CREATE_CHILD_SA Exchanges

Test IKEv2.SGW.I.1.2.5.1: Create new CHILD_SA by sending CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to generate new CHILD_SAs.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3
- [RFC 4718] Sections 4.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Packet #1	See below	
Packet #2	See Common Packet #6	

Packet #2: IKE_AUTH response

IPv6 Header	Same as the Common Packet #6
UDP Header	Same as the Common Packet #6
IKEv2 Header	Same as the Common Packet #6

E Payload	Same as the	Common Packet #6	
IDi Payload	Same as the	Common Packet #6	
AUTH Payload	Same as the Common Packet #6		
N Payload	Same as the Common Packet #6		
SA Payload	Same as the Common Packet #6		
TSi Payload	Other fields are same as the Common Packet #6		
	Traffic Selectors	See below	
TSr Payload	Other fields are same as the Common Packet #6		
	Traffic Selectors	See below	

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. NUT starts to negotiate new CHILD_SA with TN1 by sending CREATE_CHILD_SA request.
- 7. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.I.1.2.5.2: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to g enerate new CHILD_SAs.

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3
- [RFC 4718] Sections 4.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

			FORUM	
TH1	NUT	TN1	TH2	TH3
(Host)	(SGW)	(SGW)	(Host)	(Host)
		 > 		 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1,
		 >		KEr, Nr) (Packet #1) IKE_AUTH request (HDR, SK {IDi, AUTH,
	 	 	 	SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	 	 =====+ =====+	 > 	
i	 X 	===== 		IPsec {Echo Request} (Packet #5) (Judgment #5) IPsec {Echo Request} (Packet #6) (Judgment #6)
				CREATE_CHILD_SA request (HDR, SK{SA, Ni, TSi, TSr}) (Judgment #7) CREATE_CHILD_SA response (HDR, SK{SA, Nr, TSi, TSr}) (Packet #7)
	 	 =====+ =====+	 > 	
	 	 -====+ 	 	IPsec {Echo Request}
V	V	V	V	V

Packet #1	See Common Packet #2
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
	This packet is cryptographically protected by the
	CHILD_SA negotiated at Step 1 to Step 5.
Packet #6	See below
Packet #7	See below
Packet #8	See Common Packet #21
Packet #9	See Common Packet #25
	See below
Packet #10	This packet is cryptographically protected by the

	CHILD_SA negotiated at Step 14 to Step 16.
Packet #11	See below

• Packet #2: IKE_AUTH response

IPv6 Header	Same as the	Common Packet #4
UDP Header	Same as the	Common Packet #4
IKEv2 Header	Same as the	Common Packet #4
E Payload	Same as the	Common Packet #4
IDi Payload	Same as the	Common Packet #4
AUTH Payload	Same as the	Common Packet #4
N Payload	Same as the	Common Packet #4
SA Payload	Same as the	Common Packet #4
TSi Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Packet #4	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link B
		Ending Address	TH1's Global Address on Link B

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH2's Global Address on Link Y
		Ending Address	TH2's Global Address on Link Y

• Packet #5: Echo Request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH3's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

• Packet #6: Echo Request

IPv6 Header	Source Address	TH1's Global Address
	Distination Address	TH3's Global Address
ICMPv6 Header	Туре	128
	Code	0

Identifier	any
Sequence Number	any
Payload Data	0x0000000000000000

• Packet #7: CREATE_CHILD_SA response

IPv6 Header	Same as the	Common Packet #4
UDP Header	Same as the	Common Packet #4
IKEv2 Header	Same as the	Common Packet #4
E Payload	Same as the	Common Packet #4
IDi Payload	Same as the	Common Packet #4
AUTH Payload	Same as the	Common Packet #4
N Payload	Same as the	Common Packet #4
SA Payload	Same as the	Common Packet #4
TSi Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Packet #4	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link B
		Ending Address	TH1's Global Address on Link B

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH3's Global Address on Link Y
		Ending Address	TH3's Global Address on Link Y

• Packet #10: Echo Request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH3's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x0000000000000000

• Packet #11: Echo Reply

IPv6 Header	Source Address	TH1's Global Address
	Distination Address	TH3's Global Address
ICMPv6 Header	Туре	129
	Code	0

Identifier	any
Sequence Number	any
Payload Data	0x0000000000000000

Part A: (ADVANCED)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT.
- 6. TH2 transmits an Echo Request packet to TH1.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply packet to TH2.
- 9. Observe the messages transmitted on Link B.
- 10. TH3 transmits an Echo Request packet to TH1.
- 11. Observe the messages transmitted on Link A.
- 12. TH1 transmits an Echo Request packet to TH3.
- 13. Observe the messages transmitted on Link B.
- 14. NUT starts to negotiate new CHILD_SA with TN1 by sending CREATE_CHILD_SA request.
- 15. Observe the messages transmitted on Link B.
- 16. After a reception of CREATE_CHILD_SA request from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT with following Traffic Selector
- 17. TH2 transmits an Echo Request packet to TH1.
- 18. Observe the messages transmitted on Link A.
- 19. TH1 transmits an Echo Reply packet to TH2.
- 20. Observe the messages transmitted on Link B.
- 21. TH3 transmits an Echo Request packet to TH1.
- 22. Observe the messages transmitted on Link A.
- 23. TH1 transmits an Echo Reply packet to TH3.
- 24. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Request with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT never forwards an Echo Request.

Step 13: Judgment #6

The NUT never forwards an Echo Request.

Step 15: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT forwards an Echo Request.

Step 13: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Group 2.6. Exchange Collisions

Test IKEv2.SGW.I.1.2.6.1: Simultaneous CHILD_SA Close

Test IKEv2.SGW.I.1.2.6.2: Simultaneous IKE_SA Close

Test IKEv2.SGW.I.1.2.6.3: Simultaneous CHILD_SA Rekeying

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	FORUM TH2
(Host)	(SGW)	(SGW)	(Host)
	 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	> 	 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2)
	< 	 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 < 	i	 =======+ =======+	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired
			(Packet #4) (Judgment #4)
		 > 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 	· 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #5)
		>	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #6)
	 < 	 	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #6)
		·> 	INFORMATIONAL request (HDR, SK {D}) (Judgment #7)
	< 	· 	INFORMATIONAL response (HDR, SK {D}) (Packet #7)
 	 	 > 	 INFORMATIONAL request (HDR, SK {D}) (Judgment #8)
 	< 	· 	INFORMATIONAL response (HDR, SK {D}) (Packet #8)
	 	 =======+ 	IPsec {Echo Request} (new CHILD_SA) (Packet #9) (Judgment #9)
	 ===============================	:======+ 	> IPsec {Echo Reply} (new CHILD_SA) (Packet #10) (Judgment #10)
I V	I V	V	I V
N: REKEY_SA			

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #15
Packet #6	See Common Packet #16
Packet #7	See below

Packet #8	See below
Packet #9	See Common Packet #21
Packet #10	See Common Packet #25

Packet #7: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Packet #8: INFORMATIONAL response

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	1
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0

	Reserved	0
	-	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
		NUT's inbound CHILD_SA SPI value of the new CHILD_SA initiated by
	Security Parameter Index	the NUT at Step 9

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA expires.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA request to rekey CHILD_SA to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with a CREATE_CHILD_SA response to the CRETE_CHILD_SA received at Step 9. The response message includes minimum Nonce Data.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an INFORMATIONAL response to the INFORMATIONAL request received at Step 15.
- 17. Observe the messages transmitted on Link A.
- 18. TN1 responds with an INFORMATIONAL response to the INFORMATIONAL request received at Step 17.
- 19. TH2 transmits an Echo Request to TH1.
- 20. Observe the messages transmitted on Link B.
- 21. TH1 transmits an Echo Reply to TH2.
- 22. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH request including "ENCR 3DES",

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the original CHILD_SA.

Step 18: Judgment #8

The NUT transmits an INFORMATIONAL request with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the new CHILD_SA initiated by the NUT at Step 11.

Step 20: Judgment #9

The NUT forwards an Echo Request.

Step 22: Judgment #10

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.6.4: Simultaneous CHILD_SA Rekeying with retransmission

Purpose:

To verify an IKEv2 device properly handles simultaneous CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4718] - Sections 5.11.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT TN1	TH2
(Host)	(SGW) (SGV	
(11031)	(5011) (501	
	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	>	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	 < 	(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	· · · · · · · · · · · · · · · · · · ·	
 		IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
I	1 1	
	 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #5)
	 < 	 CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #5)
į	>	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #6)
	 < 	INFORMATIONAL request (HDR, SK {D}) (Packet #6)
	>	INFORMATIONAL response (HDR, SK {D}) (Judgment #7)
		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Judgment #8)
	< 	<pre> CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)} (Packet #7)</pre>
 < 	 	IPsec {Echo Request} (new CHILD_SA) (Packet #8) (Judgment #9) > IPsec {Echo Reply} (new CHILD_SA)
	 	IPsec {Echo Reply} (new CHILD_SA) (Packet #9) (Judgment #10)
V	V V	V
N: REKEY_SA		

See Common Packet #2
See Common Packet #6
See Common Packet #21
See Common Packet #25
See Common Packet #15
See below
See below
See Common Packet #21
See Common Packet #25

Packet #6: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	0
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	The same value as corresponding request's Message ID
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value of the original CHILD_SA

Packet #7: CREATE_CHILD_SA response

	Same as Common Packet #14	
	Same as Common Packet #14	
	Same as Common Packet #14	
Same as Common Packet #1-		
Next Payload	0	
Critical	0	
Reserved	0	
Payload Length	10	
Protocol ID	0	
SPI Size	0	
Notify Message Type	NO_PROPOSAL_CHOSEN (14)	
	Critical Reserved Payload Length Protocol ID SPI Size	

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.

- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA request to rekey CHILD_SA to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 transmits an INFORMAITONAL request with a Delete Payload to close the replaced CHILD SA.
- 15. Observe the messages transmitted on Link A.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 responds with a CREATE_CHILD_SA response with a Notify payload of type NO_PROPOSAL_CHOSEN to the retransmitted CREATE_CHILD_SA request.
- 18. TH2 transmits an Echo Request to TH1.
- 19. Observe the messages transmitted on Link B.
- 20. TH1 transmits an Echo Reply to TH2.
- 21. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey a CHILD_SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL response with a Delete Payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value of the original CHILD_SA.

Step 16: Judgment #8

The NUT retransmits the same CREATE_CHILD_SA request as the message at Step 11. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 19: Judgment #9

The NUT forwards an Echo Request.

Step 21: Judgment #10

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.6.5: Simultaneous IKE_SA Rekeying

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4718] - Sections 5.11.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

THA	NILIT	TNA	TIIO
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	> 	IKE_AUTH request (HDR, SK {IDi, AUTH,
'	I	1	I
 	 	I	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
	 	> 	 CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5)
	 < 		CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #5)
		>	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #6)
	 < 		CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Packet #6)
	 <	į	INFORMATIONAL request (HDR, SK {D}) (Judgment #7) INFORMATIONAL response (HDR, SK {}) (Packet #7)
	 <	 > 	 INFORMATIONAL request (HDR, SK {D}) (Judgment #8) INFORMATIONAL response (HDR, SK {})
	 <	 	(Packet #8) INFORMATIONAL request (HDR, SK {}) (new IKE_SA)
	 	> 	(Packet #9) INFORMATIONAL response (HDR, SK {}) (new IKE_SA) (Judgment #9) V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #11
Packet #6	See Common Packet #12
Packet #7	See Common Packet #18
Packet #8	See Common Packet #18
Packet #8	See Common Packet #17

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 responds with a CREATE_CHILD_SA response to the CREATE_CHILD_SA request received at Step 11. The response message includes minimum Nonce Data to make the NUT send a message to close duplicated IKE SA.
- 15. Observe the messages transmitted on Link A.
- 16. TN1 responds with an INFORMATIONAL response with no payload.
- 17. Observe the messages transmitted on Link A.
- 18. TN1 responds with an INFORMATIONAL response with no payload.
- 19. TN1 transmits an INFORMATIONAL request with no payload to the NUT. The message is cryptographically protected by the new IKE_SA initiated by TN1 at Step 12.
- 20. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT responds a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the proposal in the SA payload Response has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's responder's SPI value in the SPI field.

Step 15: Judgment #7

The NUT transmits an INFORMATIONAL request . The message's IKE_SA Initiator's SPI value is the IKE_SA Initiator's SPI value of the original IKE_SA, and the message's IKE_SA Responder's SPI value is the IKE_SA Responder's SPI value of the original IKE_SA. The message also has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Step 17: Judgment #8

The NUT transmits an INFORMATIONAL request . The message's IKE_SA Initiator's SPI value is the IKE_SA Initiator's SPI value of the new IKE_SA initiated by the NUT at Step 9, and the message's IKE_SA Responder's SPI value is the IKE_SA Responder's SPI value of the new IKE_SA initiated by the NUT at Step 9. The message also has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.

Step 20: Judgment #9

The NUT transmits an INFOMATIONAL response with no payload.

Possible Problems:

- Each NUT has the different lifetime of SA.
- •
- Step 15 (INFORMATIONAL request to delete the original IKE_SA) can possibly switch the place with Step 17 (INFORMATIONAL request to delte the new IKE_SA).

Test IKEv2.SGW.I.1.2.6.6: Simultaneous IKE_SA Rekeying with retransmission

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4718] - Sections 5.11.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
 In addition, set IKE_SA Lifetime to 60 seconds and set CHILD_SA Lifetime to 300 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

			FORUM
TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 	>	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 	>	 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	 < 		(Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
	 	 =====+ =====+	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
	 	 > 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #5) CREATE_CHILD_SA request (HDR, SK {SA, Ni})
		>	(Packet #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #6)
	 < 		INFORMATIONAL request (HDR, SK {D}) (Packet #6) INFORMATIONAL response (HDR, SK {})
 V	 X 	 	(Judgment #7) CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Judgment #8) V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #11
Packet #6	See below

Packet #6: INFORMATIONAL request

racket #0	5: INFORMATIONAL request	
IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header IKE_SA Initiator's SPI IKE_SA Responder's SPI Next Payload Major Version Minor Version Exchange Type X (bits 0-2 of Flags) I (bit 3 of Flags) I (bit 3 of Flags)	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any

		7 0110111
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index	none

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 and 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. TN1 transmits a CREATE CHILD SA request to rekey IKE SA to the NUT.
- 13. Observe the messages transmitted on Link A.
- 14. TN1 transmits an INFORMATONAL request to close the original IKE_SA. The message has a Delete Payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.
- 15. Observe the messages transmitted on Link A.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey an IKE_SA. The message includes "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the CREATE_CHILD_SA request has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT responds a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the proposal in the SA payload Response has a SA payload including 1 (IKE) in the Protocol ID field, 8 in the SPI size field and new IKE_SA's responder's SPI value in the SPI field.

Step 15: Judgment #7

The NUT responds with an INFOMATIONAL response to the INFORMATIONAL request to close the original IKE_SA.

Step 16: Judgment #8

The NUT never retransmits a CREATE_CHILD_SA request transmitted at Step 11.

Possible Problems:

• Each NUT has the different lifetime of SA.

Test IKEv2.SGW.I.1.2.6.7: Rekeying a CHILD_SA while Closing a CHILD_SA

Test IKEv2.SGW.I.1.2.6.8: Closing a New CHILD_SA

Test IKEv2.SGW.I.1.2.6.9: Rekeying a New CHILD_SA

Test IKEv2.SGW.I.1.2.6.10: Rekeying an IKE_SA with half-open CHILD_SAs

Test IKEv2.SGW.I.1.2.6.11: Rekeying a CHILD_SA while rekeying an IKE_SA

Test IKEv2.SGW.I.1.2.6.12: Rekeying an IKE_SA with half-closed CHILD_SAs

Test IKEv2.SGW.I.1.2.6.13: Closing a CHILD_SA while rekeying an IKE_SA

Test IKEv2.SGW.I.1.2.6.14: Closing an IKE_SA while rekeying an IKE_SA

Test IKEv2.SGW.I.1.2.6.15: Rekeying an IKE _SA while Closing an IKE_SA

Group 2.7. Non zero RESERVED fields

Test IKEv2.SGW.I.1.2.7.1: Non zero RESERVED fields in CREATE_CHILD_SA response

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

(Host)		TN1	TH2
(11031)	(SGW)	(SGW)	(Host)
	 <	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Judgment #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Packet #1)
	 		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Judgment #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Packet #2)
 	.' 	.' 	IPsec {Echo Request} repeat Echo exchange (Packet #3) (Judgment #3) until lifetime of SA> IPsec {Echo Reply} is expired (Packet #4) (Judgment #4)
		 > 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr} (Judgment #5)
			CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Packet #5)
1 	 	> 	INFORMATIONAL request (HDR, SK {D}) (Judgment #6) V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #16
	All RESERVED fields are set to one.

Part A: (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP using the first negotiated algorithms to NUT.
- 7. Observe the messages transmitted on Link B.
- 8. TH1 transmits an Echo Reply to TH2.
- 9. Observe the messages transmitted on Link A.
- 10. Repeat Steps 6 through 9 until lifetime of SA is expired.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of CREATE_CHILD_SA request for rekeying from the NUT, TN1 responds with a CREATE_CHILD_SA response to the NUT. All RESERVED fields in the message are set to one.

13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotitated algorithms.

Step 11: Judgment #5

The NUT transmits a CREATE_CHILD_SA request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 13: Judgment #6

The NUT transmits an INFORMATIONAL request with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the inblund SPI value to be deleted as SPI.

Possible Problems:

• Each NUT has the different lifetime of SA.

Group 3. The INFORMATIONAL Exchange

Group 3.1. Header and Payload Formats

Test IKEv2.SGW.I.1.3.1.1: Sending INFORMATIONAL Exchange

Group 3.2. Use of Retransmission Timers

Test IKEv2.SGW.I.1.3.2.1: Retransmission of INFORMATIONAL request

Test IKEv2.SGW.I.1.3.2.2: Stop of retransmission of INFORMATIONAL request

Group 3.3. Non zero RESERVED fields

Test IKEv2.SGW.I.1.3.3.1: Non zero RESERVED fields in INFORMATIONAL response

Group 3.4. Error Handling

Test IKEv2.SGW.I.1.3.4.1: INVALID_SPI

Section 2.1.2. Endpoint to Security Gateway Tunnel

Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.SGW.I.2.1.1.1: Sending IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See Common Packet #2

Part A: IKE Header Format (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE SA INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.

Part B: Encrypted Payload Format (BASIC)

- 5. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link B.
- 7. TN1 responds with an IKE SA INIT response to the NUT.

8. Observe the messages transmitted on Link B.

Part C: IDi Payload Format (BASIC)

- 9. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link B.
- 11. TN1 responds with an IKE_SA_INIT response to the NUT.
- 12. Observe the messages transmitted on Link B.

Part D: AUTH Payload Format (BASIC)

- 13. NUT starts to negotiate with TN1 by sending IKE SA INIT request.
- 14. Observe the messages transmitted on Link B.
- 15. TN1 responds with an IKE_SA_INIT response to the NUT.
- 16. Observe the messages transmitted on Link B.

Part E: SA Payload Format (BASIC)

- 17. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link B.
- 19. TN1 responds with an IKE_SA_INIT response to the NUT.
- 20. Observe the messages transmitted on Link B.

Part F: TSi Payload Format (BASIC)

- 21. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link B.
- 23. TN1 responds with an IKE_SA_INIT response to the NUT.
- 24. Observe the messages transmitted on Link B.

Part G: TSr Payload Format (BASIC)

- 25. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link B.
- 27. TN1 responds with an IKE_SA_INIT response to the NUT.
- 28. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted IKE Header containing following values:

T OROM	
1 2 3	
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0	1
+-	+-+
! IKE_SA Initiator's SPI	!
!	!
+-	+-+
! IKE_SA Responder's SPI	!
!	!
+-	+-+
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags	!
+-	+-+
! Message ID	!
+-	+-+
! Length	!
+-	+-+

Figure 128 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00010000)2 = (1610).
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted Encrypted Payload containing following values:

Figure 129 Encrypted payload

- A Next Payload field set to IDi Payload (35).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted ID Payload containing following values:

Figure 130 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted AUTH Payload containing following values:

Figure 131 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 20: Judgment #2

					FUKUM				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -		
	! Next	44	!0!	0	! Length	40	!		
	+-+-+-+	+-+	-+-+-+-		+-+-+-+-+-+-+		-+-+-+-+ -		
	! 0	•	!	0	! Length	36	!	!	!
					+-+-+-+-+-+-+-+			1	
	! Number	1	! PIOL	טו טו	! SPI Size 4	! ITans	CHL 3!	1	1
	! SPI val	 IIE					 	 	
	+-+-+-+	+-+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		i
1	! 3	3	!	0	! Length	8	!	i	i
Transform	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+	İ	SA Payloa
1	! Type 1	(EN)	!	0	! Transform ID	3	(3DES) !	Proposal	
	+-+-+-+	+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		
_ !	! 3		!	0	! Length	8	!	!	!
Transform					+-+-+-+-+-+-+-+-+		-+-+-+-+		!
ı	! Type 3	3 (IN)			! Transform ID +-+-+-+		(SHA1) !		1
1	! ()	 	0	! Length	8	 	 	
Transform	•		-+-+-+-		: Longtn +-+-+-+-+-+	-	· -+-+-+-+		
	! Type 5				! Transform ID	0	(No) !	i	i
	+-+-+-+	+-+-+	, -+-+-+-	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -	· ·	

Figure 132 SA Payload contents

The NUT transmits an IKE_AUTH request including properly formatted SA Payload containing following values (refer following figures):

Figure 133 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

The following proposal must be included in Proposals field.

Figure 134 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero if this structure is the last proposal, otherwise set to 2.
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1 if this structure is the first proposal, otherwise set to 1 greater thatn the previous proposal.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 135 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.

- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH HMAC SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSi Payload containing following values:

Figure 136 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

7 67(6))	
1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5	678901
+-	-+-+-+-+-+
! TS Type !IP Protocol ID* Selector Leng	th
+-	-+-+-+-+-+
Start Port* End Port*	1
+-	-+-+-+-+-+
!	!
~ Starting Address*	~
!	!
+-	-+-+-+-+-+
!	!
~ Ending Address*	~
!	!
+-	-+-+-+-+-+

Figure 137 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- A Ending Address field set to greater that or equal to Prefix B.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH request including properly formatted TSr Payload containing following values:

Figure 138 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

The following traffic selector must be included in Traffic Selectors field.

Figure 139 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to TN1 address.
- An Ending Address field set to less than or equal to TN1 address.

Possible Problems:

• IKE_AUTH request has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDi;
[CERT+],
[N(INITIAL_CONTACT)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[IDr],
AUTH,
[CP(CFG_REQUEST)],
[N(IPCOMP_SUPPORTED)+],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA,
TSi,
TSr,
[V+]
```

- The implementation may not set single proposal by the implementation policy. In this case, Security Association Payload contains multiple proposals.
- The implementation may not set single traffic selector by the implementation policy. In this case, Traffic Selector Payload contains multiple proposals.

• Each of transforms can be located in the any order.

Test IKEv2.SGW.I.2.1.1.2: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1
(Host)	(SGW)	(End-Node)
l`ı ′	Ì	`
l i	j	> IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	į	(Judgment #1)
	<	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
1		(Packet #1)
1		
I		> IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
		(Judgment #2)
I	<	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
!	!	(Packet #2)
!		
<	· +=======	====== IPsec {Echo Request}
!		(Judgment #3)
	· +=======	=====> IPsec {Echo Reply}
!	ļ	(Judgment #4)
l j	l V	
V	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A (BASIC)

- 1. NUT starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. TN1 responds with an IKE_SA_INIT response to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. After reception of IKE_AUTH request from the NUT, TN1 responds with an IKE_AUTH response to the NUT
- 6. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to NUT.
- 7. Observe the messages transmitted on Link A.
- 8. TH1 transmits an Echo Reply to TN1.
- 9. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT forwards an Echo Request.

Step 9: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

 Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TN1 can send Echo Reply to TH1 instead of sending Echo Request.

Section 2.2. Responder
Section 2.2.1. Security Gateway to Security Gateway Tunnel
Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.SGW.R.1.1.1.1: Sending IKE_SA_INIT response

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT response using properly Header and Payloads format

References:

- [RFC4306] Section 1.2, 2.10, 3.1, 3.2, 3.3, 3.4 and 3.9
- [RFC 4718] Sections 7.4

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.

Part B: SA Payload Format (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 4. Observe the messages transmitted on Link A.

Part C: KE Payload Format (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

Part D: Nonce Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including properly formatted IKE Header containing following values:

Figure 140 Header format

- An IKE_SA Initiator's SPI field set to IKE_SA Initiator's SPI field value supplied in the first IKE_SA_INIT request message.
- An IKE_SA Responder's SPI field set to a 64-bits value chosen by the NUT. It MUST not be zero.
- A Next Payload field set to SA Payload (33).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_SA_INIT (34).
- A Flags field set to (00000100)2 = (4)10.
- A Message ID field set to zero.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 4: Judgment #1

			1	2		3		
0 1 2 3	3 4 5 6	6 7 8 9	0 1 2 3	4 5 6 7 8 9 0 1	2 3 4 5 6	7 8 9 0 1		
! Next	34	!0!	0	! Length	44			
!	0	!	0	! Length	40	!		
+-+-+-+ !	-+-+-+ 3	·+-+-+- !	+-+-+-+ 0	-+-+-+-+-+-+-+ ! Length	+-+-+-+ 8	·-+-+-+-+ !	 	
!	3	!	0	! Length	8	!	 	 SA Payload
						(SHA1) !	Proposal 	
!	3	!	0	! Length	8	!	 	
						(SHA1) !	 	
+-+-+-+ !	-+-+-+ 0	-+-+-+- !	+-+-+-+ 0	-+-+-+-+-+-+-+ ! Length	+-+-+-+ 8	·-+-+-+-+ !	 	
	+-+-++ ! Next +-+-++ ! Numbe ++-+ ! Type ++- ! Type + ! Type + ! Type + ! Type	! Next 34 +-+	! Next 34 !0! !	! Next 34 !0! 0 +-+	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ++++++++++++++++++++++++++++++++++	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 ++++++++++++++++++++++++++++++++++	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ! Next 34 !0! 0 ! Length 44 ! ! O ! 0 ! Length 40 ! ! Number 1 ! Prot ID 1 ! SPI Size 0 ! Trans Cnt 4 ! ! 3 ! 0 ! Length 8 ! ! Type 1 (EN)! 0 ! Transform ID 3 (3DES)! ! Type 2 (PR)! 0 ! Transform ID 2 (SHA1)! ! Type 3 (IN)! 0 ! Transform ID 2 (SHA1)! ! Type 3 (IN)! 0 ! Transform ID 2 (SHA1)! ! Type 3 (IN)! 0 ! Transform ID 2 (SHA1)!	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Next

Figure 141 SA Payload contents

The NUT transmits an IKE_SA_INIT response including properly formatted SA Payload containing following values (refer following figures):

Figure 142 SA Payload format

- A Next Payload field set to KE Payload (34).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 143 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 40 bytes for this proposal according to Common Configuration.
- A Proposal # field set to 1.
- A Protocol ID field set to IKE (1).
- A SPI Size field set to zero.
- A # of Transforms field set to 4.

A Transform field set to following (There are 4 Transform Structures).

Figure 144 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including

Header and Attribute. It is 8 bytes for PRF_HMAC_SHA1.

- A Transform Type field set to PRF (2).
- A RESERVED field set to zero.
- A Transform ID set to PRF_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.
- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #4

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for 1024 MODP Group.
- A Transform Type field set to D-H (4).
- A RESERVED field set to zero.
- A Transform ID set to Group2 (2).

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including properly formatted KE Payload containing following values:

Figure 145 KE Payload format

- A Next Payload field set to Nonce Payload (40).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 136 bytes for Group 2.
- A DH Group field set to Group2 (2).
- A RESERVED field set to zero.
- A Key Exchange Data field set to Diffie-Hellman public value. The length of the Key Exchange Data field must be equal to 1024bit.

Part D

The NUT transmits an IKE_SA_INIT response including properly formatted Nonce Payload containing following values:

Figure 146 Nonce Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Nonce Data field set to random data generated by the transmitting entity. The size of the Nonce must between 16 and 256 octets.

Possible Problems:

• IKE_SA_INIT response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
SA, KE, Nr,
[N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP)],
[[N(HTTP_CERT_LOOKUP_SUPPORTED)], CERTREQ+],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.SGW.R.1.1.1.2: Sending IKE_AUTH response

Purpose:

To verify an IKEv2 device transmits IKE_AUHT response using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: IDr Payload Format (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: SA Payload Format (BASIC)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: TSi Payload Format (BASIC)

- 21. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSr Payload Format (BASIC)

- 25. TN1starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 28. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted IKE Header containing following values:

1 OKOM	
1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	9 0 1
+-	-+-+-+
! IKE_SA Initiator's SPI	!
!	!
+-	-+-+-+
! IKE_SA Responder's SPI	!
· ·	!
+-	-+-+-+
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags	!
+-	-+-+-+
! Message ID	!
+-+-+-+-+-+-+-+-+-+-+-+-+-+	-+-+-+
! Length	!
+-+-+-+-+-+-+-+-+-+-+-+-+-+-	-+-+-+

Figure 147 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00000100)2 = (4)10.
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Encrypted Payload containing following values:

Figure 148 Encrypted payload

- A Next Payload field set to IDr Payload (36).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted ID Payload containing following values:

Figure 149 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 150 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 20: Judgment #2

1 2 3 4 5 6 7 8 9 0 1 1						FORUM				
Next 44 10! 0 Length 40				1		2		3		
1		0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
1		+-+-+-+	+-+-	-+-+-+	+-+-+-+	+-+-+-+-+-+	-+-+-+-	+-+-+-+ -		
1		! Next	44	!0!	0	! Length	40	!		
Number 1		+-+-+-+	+-+-	-+-+-+	+-+-+-+	+-+-+-+-+-+	-+-+-+-	+-+-+-+ -		
Number 1		! 0)	!	0	! Length	36	!		1
SPI value		+-+-+-+								
SPI value		! Number	1	! Prot	ID 3	! SPI Size 4	! Trans	Cnt 3 !		
Transform +-++++++++++++++++++++++++++++++++++				-+-+-+	+-+-+-+	+-+-+-+-+-+	-+-+-+-	+-+-+-+	1	
Transform +-+		! SPI val	ue					!	!	!
Transform +-+		+-+-+-+	+-+-+·	-+-+-+-	+-+-+-+	+-+-+-+-+-+	-+-+-+-	.+-+-+-+	1	
! Type 1 (EN) !	T (!		•	-	!	1	
++++++++++++++++++++++++++++++++++	ranstorm									SA PayToad
! 3 ! 0 ! Length 8 !	I		` '					,	Proposai	
Transform +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+				-+-+-+			_	.+-+-+-+-	1	
! Type 3 (IN) ! 0 ! Transform ID 2 (SHA1) !	Transform			: -4-4-4-1	•	· ·	·	: .4.4.4.4.4	1	1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	Transform							(SHA1) I		1
! 0 ! 0 ! Length 8 !		+-+-+-+	+-+-+					` ,	i	i I
Transform +-+-+-+-+	1	! 0)	!	_		8	!	<u>'</u>	i
· · · · · · · · · · · · · · · · · · ·	Transform			-+-+-+-		•	-+-+-+-	.+-+-+-+	i	i
	i								i	i
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+		+-+-+-+	+-+-+	, -+-+-+-	+-+-+-+	+-+-+-+-+-+	-+-+-+-	.+-+-+-+ -	· 	

Figure 151 SA Payload contents

The NUT transmits an IKE_AUTH response including properly formatted SA Payload containing following values (refer following figures):

Figure 152 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 153 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 154 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including

Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.

- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSi Payload containing following values:

Figure 155 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

7 0710111	
1 2	3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	9 0 1
+-	+-+-+-+
! TS Type	1
+-	+-+-+-+
Start Port* End Port*	
+-	+-+-+-
!	!
~ Starting Address*	~
!	!
+-	
!	!
~ Ending Address*	~
·!	!
+-	

Figure 156 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix Y.
- A Ending Address field set to greater that or equal to Prefix Y.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSr Payload containing following values:

Figure 157 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 158 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- An Ending Address field set to less than or equal to Prefix B.

Possible Problems:

• IKE_AUTH response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDr, [CERT+],
AUTH,
[CP(CFG_REPLY)],
[N(IPCOMP_SUPPORTED)],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, TSi, TSr,
[N(ADDITIONAL_TS_POSSIBLE)],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.SGW.R.1.1.1.3: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key.

References:

• [RFC 4306] - Sections 1.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
		 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
i	l`	İ	(Packet #1)
i I	 	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
 	 <		IKE_AUTH request (HDR, SK {IDi, AUTH,
		>	SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	i İ		(Judgment #2)
 <		 ======+	 IPsec {Echo Request}
		 	(Packet#3) (Judgment #3) > IPsec {Echo Reply}
		======+	> IPsec {Ecno Reply} (Packet #4) (Judgment #4)
	l V	ļ	ļ

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Part A (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.

- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of sending Echo Request.

Group 1.2. Use of Retransmission Timers

Test IKEv2.SGW.R.1.1.2.1: Receipt of retransmitted IKE_SA_INIT request

Purpose:

To verify an IKEv2 device transmits IKE_SA_INIT response, if a retransmission of the response is triggered.

References:

- [RFC 4306] Sections 2.1, 2.2 and 2.4
- [RFC 4718] Sections 2.2 and 2.3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #1	
	(The Message ID is the same as Packet #1)	

Part A: (BASIC)

- 1. TN1 starts to negotiate with TN1 by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. Observe the messages transmitted on Link A.
- 4. TN1 retransmits the same IKE_SA_INIT request as the message transmitted in Step 1 to the

NUT.

5. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES","PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 3: Judgment #2

The NUT never retransmits the same IKE_SA_INIT response as the response transmitted at Step 2.

Step 5: Judgment #3

The NUT transmits the same IKE_SA_INIT response as the response transmitted at Step 2.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.2.2: Receipt of retransmitted IKE_AUTH request

Purpose:

To verify an IKEv2 device transmits IKE_AUTH response, if a retransmission of the response is triggered.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	11
(End-Node) (End-	Node)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
>	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
	(Judgillettt #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
l i i	(Packet #2)
>	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})</pre>
	(Judgment #2)
l '	wait until retrans timer expires IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
' ' '	(Judgment #3)
l i i	(ouagiiont no)
	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})</pre>
	(Packet #3)
>	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})</pre>
	(Judgment #4)
v	

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #5	
Packet #3	See Common Packet #5	
	(The Message ID is the same as Packet #2)	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_AUTH request to the NUT.

- 4. Observe the messages transmitted on Link A.
- 5. Observe the messages transmitted on Link A.
- 6. TN1 retransmits the same IKE_AUTH request as the request transmitted in Step 3 to the NUT.
- 7. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 5: Judgment #3

The NUT never retransmits the same IKE_AUTH response as the response transmitted at Step 4.

Step 7: Judgment #4

The NUT transmits the same IKE_AUTH response as the response transmitted at Step 4.

834

Possible Problems:

None.

Group 1.3. State Synchronization and Connection Timeouts

Test IKEv2.SGW.R.1.1.3.1: State Synchronization with ICMP messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives ICMP messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TR1	TN1	TH2
(Host)	(SGW)	(Router)	(SGW)	(Host)
	 	 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
		 	·> 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 	 		IPsec {Echo Request} (Packet #3) (Judgment #3) > IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 < 	 	 	Destination Unreachable (No route to destination) (Packet #5)
	 	 	 	IPsec {Echo Request} (Packet #6) (Judgment #5) IPsec {Echo Reply} (Packet #7) (Judgment #6)
V	I V	I V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See Common Packet #21
Packet #7	See Common Packet #25

• Packet #5: ICMPv6 Destination Unreachable

IPv6 Header	Source Address	TR1's Global Address on Link A			
	Destination Address			NUT's Global Address on Link A	
ICMPv6	Туре			1	
	Code			0	
	Data	IP Header	Source Address	NUT's Global Address on Link A	
			Destination Address	TN1's Global Address on Link X	
			Next Header	50 (ESP)	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1 and TN1 forwards the Echo Request with IPsec ESP using corresponding algorithms to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of an Echo Request from the NUT, TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TR1 transmit an ICMP Destination Unreachable Message to the NUT.
- 10. TH2 transmits an Echo Request to TH1 and TN1 forwards the Echo Request with IPsec ESP using corresponding algorithms to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of an Echo Request from the NUT, TH1 transmits an Echo Reply to TH2.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5 The NUT forwards an Echo Request.

Step 13: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.3.2: State Synchronization with IKE messages

Purpose:

To verify an IKEv2 device synchronizes its state when it receives IKE messages.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TR1	TN1	TH2
(Host)	(SGW)	(Router)	(SGW)	(Host)
	 < 	 	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1) IKE_AUTH request (HDR, SK {IDi, AUTH,SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2) (Judgment #2)
	 	 	 	IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
	< 	 	 	IKE Message (Packet #5)
	 	 	 	IPsec {Echo Request}
V	V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Packet #5	See below
Packet #6	See Common Packet #21
Packet #7	See Common Packet #25

Packet #5: cryptographicaly unprotected INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link A
	Destination Address	NUT's Global Address on Link X
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	41 (N)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	any
	Length	any
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Protocol ID	3 (ESP)
	SPI Size	0
	Notify Message Type	11 (INVALID_SPI)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1 and TN1 forwards the Echo Request with IPsec ESP using corresponding algorithms to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of an Echo Request from the NUT, TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TR1 transmit a cryptographically unprotected INFORMATIONAL request with Notify payload of type INVALID_ SPI to the NUT.
- 10. TH2 transmits an Echo Request to TH1 and TN1 forwards the Echo Request with IPsec ESP using corresponding algorithms to the NUT.
- 11. Observe the messages transmitted on Link A.
- 12. After reception of an Echo Request from the NUT, TH1 transmits an Echo Reply to TH2.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 11: Judgment #5

The NUT forwards an Echo Request.

Step 13: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

None

Test IKEv2.SGW.R.1.1.3.3: Close connections when receiving INITIAL_CONTACT

Test IKEv2.SGW.R.1.1.3.4: Receiving Liveness check

Purpose:

To verify an IKEv2 device checks whether the other endpoint is alive.

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                 TN1
(SGW)
                (SGW)
                 -| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #1)
                 ->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Judgment #1)
                 -- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                    (Packet #2)
                    IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                    (Judgment #2)
                    INFORMATIONAL request (HDR, SK {})
                    (Packet #3)
                    INFORMATIONAL response (HDR, SK {})
                    (Judgment #3)
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #17

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Test IKEv2.SGW.R.1.1.3.5: Receiving Delete Payload for IKE_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when IKE_SA is deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

```
TN1
NUT
(SGW)
                (SGW)
               --- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                 | (Packet #1)
             ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                 | (Judgment #1)
          ----- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                 | (Packet #2)
             --->| IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                 | (Judgment #2)
             ---- INFORMATIONAL request (HDR, SK {D})
                 | (Packet #3)
               -->| INFORMATIONAL response (HDR, SK {})
                 | (Judgment #3)
                 V
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0

		TOROW			
	Exchange Type	37 (INFORMATIONAL)			
	X (bits 0-2 of Flags)	0			
	I (bit 3 of Flags)	any			
	V (bit 4 of Flags)	/ (bit 4 of Flags)			
	R (bit 5 of Flags)	0			
	X (bits 6-7 Flags)	0			
	Message ID	2			
	Length	any			
E Payload	Next Payload	42 (D)			
	Critical	0			
	Reserved	0			
	Payload Length	any			
	Initialization Vector	The same value as block length of the underlying encryption algorithm			
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm			
	Padding	Any value which to be a multiple of the encryption block size			
	Pad Length	The length of the Padding field			
	Integrity Checksum Data	The Cryptographic checksum of the entire message			
D Payload	D Payload Next Payload				
	Critical	0			
	Reserved	0			
	Payload Length	8			
	Protocol ID	1 (IKE_SA)			
	SPI Size	0			
	# of SPIs	0			
	Security Parameter Index	none			

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with a Delete payload including 1 (IKE_SA) as Protocol ID, zero as SPI Size and no SPI value.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with no payloads.

Possible Problems:

None

Test IKEv2.SGW.R.1.1.3.6: Receiving Delete Payload for CHILD_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

```
TN1
NUT
(SGW)
                (SGW)
               --- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                 | (Packet #1)
             ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                 | (Judgment #1)
           ----- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                 | (Packet #2)
              --->| IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                  | (Judgment #2)
              ---| INFORMATIONAL request (HDR, SK {D})
                  | (Packet #3)
               -->| INFORMATIONAL response (HDR, SK {D})
                  | (Judgment #3)
                 V
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

Packet #3: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0

	TOROW				
	Exchange Type	37 (INFORMATIONAL)			
	X (bits 0-2 of Flags)	0			
	I (bit 3 of Flags)	any			
	V (bit 4 of Flags)	4 of Flags)			
	R (bit 5 of Flags)	0			
	X (bits 6-7 Flags)	0			
	Message ID	2			
	Length	any			
E Payload	Next Payload	42 (D)			
	Critical	0			
	Reserved	0			
	Payload Length	any			
	Initialization Vector	The same value as block length of the underlying encryption algorithm			
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm			
	Padding	Any value which to be a multiple of the encryption block size			
	Pad Length	The length of the Padding field			
	Integrity Checksum Data	The Cryptographic checksum of the entire message			
D Payload Next Payload		0			
	Critical	0			
	Reserved	0			
	Payload Length	12			
	Protocol ID	3 (ESP)			
	SPI Size	4			
	# of SPIs	1			
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted			

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with a Delete payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the TN1's inbound SPI value to be deleted as SPI value.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response with a Delete payload including 3 (ESP) as Protocol ID, 4 as SPI Size and the NUT's inbound SPI value to be deleted as SPI value.

Possible Problems:

• None

Group 1.4. Version Numbers and Forward Compatibility

Test IKEv2.SGW.R.1.1.4.1: Receipt of a higher minor version number

Purpose:

To verify an IKEv2 device drops a message with a higher minor version number and send a notification message.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 S	See below
-------------	-----------

• Packet #1: IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1	
UDP Header	Same as the Common Packet #1	
IKEv2 Header	Other fields are same as the Common P	acket #1
	Major Version	2
	Minor Version	1
SA Payload	Same as the Common P	acket #1
KE Payload	Same as the Common Packet #1	
Ni, Nr Payload	Same as the Common Packet #1	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request with a higher minor version number.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.4.2: Receipt of a higher major version number

Purpose:

To verify an IKEv2 device drops a message with a higher major version number and send a notification message.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
Packet #1	See below

Packet#1:

IPv6 Header	Same as the Common Packet #1		
UDP Header	Same as the Common Packet #1		
IKEv2 Header	Other fields are same as the Common Packet #1		
	Major Version	3	
SA Payload	Same as the Common Packet #1		
KE Payload	Same as the Common Packet #1		
Ni Payload	Same as the Common Packet #1		

Part A: (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an INFORMATIONAL response with a Notify payload of type INVALID_MAJOR_VERSION containing following values:

1 OKOM		
1 2	3	
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	9 0 1	
+-	-+-+-+	
! Next Payload !C! RESERVED ! Payload Length	!	
+-	-+-+-+	
! Protocol ID ! SPI Size ! Notify Message Type	e !	
+-	-+-+-+	
!	!	
~ Security Parameter Index (SPI)	~	
!	!	
+-		
!	!	
~ Notification Data	~	
!	!	
+-	-+-+-+	

Figure 159 Notify Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A SPI Size field set to zero.
- A Notify Message Type field set to INVALID_MAJOR_VERSION (5).
- A Notification Data field set to the highest version number it supports (2).

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.4.3: Unrecognized payload types and critical bit is not set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is not set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                   TN1
  (SGW)
                  (SGW)
                   -| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                   | (Packet #1)
                 -->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                    | (Judgment #1)
            -----| IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                    | (Packet #2)
             ----->| IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                    | (Judgment #2)
           ----- CREATE_CHILD_SA request (HDR, SK {P, N, SA, Ni, TSi, TSr})
                    | (Packet #3)
                  ->| CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
                    | (Judgment #3)
                   ٧
P: Payload with an invalid payload type
N: REKEY_SA
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	All fields are same a	as Common Packet #15 Payload
UDP Header	All fields are same a	as Common Packet #15 Payload
IKEv2 Header	All fields are same a	as Common Packet #15 Payload
- D - I - I	N I D I I	7 11 1 11 1

	Other fields ar	e same as Common Packet #15
Invalid Payload	Next Payoad	41 (N)
	Critical	0
	Reserved	0
	Payload Length	4
N Payload	All fields are same a	as Common Packet #15 Payload
SA Payload	All fields are same a	as Common Packet #15 Payload
Ni, Nr Paylaod	All fields are same a	as Common Packet #15 Payload
TSi Paylaod	All fields are same a	as Common Packet #15 Payload
TSr Payload	All fields are same a	as Common Packet #15 Payload

Part A: Invalid payload type 1 (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 1 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 32 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 49 and the invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE_CHILD_SA request including a payload with invalid payload type to the NUT. The E payload's IKE Header Next Payload field is set to 255 and the

invalid payload's critical flag is not set. The request includes a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.

24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.4.4: Unrecognized payload types and critical bit is set

Purpose:

To verify an IKEv2 device ignores invalid payload types when the invalid type payload's critical bit is set.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
  (SGW)
                  (SGW)
    |<----- | IKE_SA_INIT request (HDR, SAi1, KEi, Ni)</pre>
                   | (Packet #1)
           ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                   | (Judgment #1)
          ----- IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                     (Packet #2)
             ---->| IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                     (Judgment #2)
            -----| CREATE_CHILD_SA request (HDR, SK {N, P, SA, Ni, TSi, TSr})
                   | (Packet #3)
                --->| CREATE_CHILD_SA response (HDR, SK {N(UNSUPPORTED_CRITICAL_PAYLOAD)})
                     (Judgment #3)
P: Payload with an invalid payload type
N: REKEY SA
```

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request

IP∨6 Header	All fields are same a	as Common Packet #13 Payload
UDP Header	All fields are same a	as Common Packet #13 Payload
IKEv2 Header	All fields are same a	as Common Packet #13 Payload
E Payload	All fields are same a	as Common Packet #13 Payload
N Pavload	Next Pavoad	Invalid pavload type value

	Other fields ar	e same as Common Packet #13
Invalid Payload	Next Payoad	33 (SA)
	Critical	1
	Reserved	0
	Payload Length	4
SA Payload	All fields are same a	as Common Packet #13 Payload
Ni, Nr Paylaod	All fields are same a	as Common Packet #13 Payload
TSi Paylaod	All fields are same a	as Common Packet #13 Payload
TSr Payload	All fields are same a	as Common Packet #13 Payload

Part A: Invalid payload type 1 and Critical bit is set (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits a CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 1 and the pointed pyaload's Critical bit is set.
- 6. Observe the messages transmitted on Link A.

Part B: Invalid payload type 32 and Critical bit is set (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits a CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 32 and the pointed pyaload's Critical bit is set.
- 12. Observe the messages transmitted on Link A.

Part C: Invalid payload type 49 and Critical bit is set (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. After reception of IKE_AUTH response from the NUT, TN1 transmits a CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The CREATE_CHILD_SA request's IKE Header Next Payload field is set to 49 and the pointed pyaload's Critical bit is set.
- 18. Observe the messages transmitted on Link A.

Part D: Invalid payload type 255 and Critical bit is set (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH response from the NUT, TN1 transmits a CREATE_CHILD_SA request including a payload invalid payload type to the NUT. The

CREATE_CHILD_SA request's IKE Header Next Payload field is set to 255 and the pointed pyaload's Critical bit is set.

24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response. The response has a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (1).

Part B

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response. The response has a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (32).

Part C

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response. The response has a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (49).

Part D

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response. The response has a Notify payload of type UNSUPPORTED_CRITICAL_PAYLOAD with the invalid payload type value (255).

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.4.5: Invalid Order Payloads

Purpose:

To verify an IKEv2 device properly handles IKE message with invalid order payloads.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
	KEi payload and Ni payload replace each other.

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT never transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

• None.

Group 1.5. Cookies

Test IKEv2.SGW.R.1.1.5.1: Cookies

Test IKEv2.SGW.R.1.1.5.2: Invalid Cookies

Test IKEv2.SGW.R.1.1.5.3: Interaction of COOKIE and INVALID_KE_PAYLOAD

Test IKEv2.SGW.R.1.1.5.4: Interaction of COOKIE and INVALID_KE_PAYLOAD with unoptimized Initiator

This test case was deleted at revision 1.1.0.

Group 1.6. Cryptographic Algorithm Negotiation

Test IKEv2.SGW.R.1.1.6.1: Cryptographic Algorithm Negotiation for IKE_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

From part A to part H, configure the devices according to the Common Configuration except for *Italic* parameters.

	IKE_SA_INIT exchanges Algorithms			
	Encryption	PRF Integrity		D-H Group
Part A	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	DELETED	DELETED	DELETED	DELETED
Part C	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part E	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14
Part F	ENCR_3DES	PRF_HMAC_SHA2_256	AUTH_HMAC_SHA1_96	Group 2
Part G	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA2_256_128	Group 2
Part H	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 24

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below

Packet #2 See Common Packet #5

Packet #1: IKE_SA_INIT request

Packet #1 is same as Common Packet #1 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)	
	Reserved	0	
	Transform Lengt	8	
	Transform Type	1 (ENCR)	
	Reserved	0	
	Transform ID		12 (AES_CBC)
	SA Attribute Attribute Type		14 (Key Length)
		Attribute Value	128

Part B:

This test case is deleted at revision 1.0.4.

Part C:

SA Transform of Tranform Type PRF is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)			
	Reserved	0			
	Transform Length	8			
	Transform Type	2 (PRF)			
	Reserved	0			
	Transform ID	4 (AES128_XCBC)			

Part D:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	5 (AES_XCBC_96)

Part E:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

	J I -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	14 (2048 MODP Group)

Part F:

SA Transform of Tranform Type PRF is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	5 (HMAC_SHA2_256)

Part G:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)

7 0110111		
Reserved		0
	Transform ID	12 (HMAC_SHA2_256_128)

Part H:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
		24 (2048-bit MODP Group with
	Transform ID	256-bit Prime Order Subgroup)

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

This test case was deleted at revision 1.1.0.

Part C: PRF PRF_AES128_CBC (ADVANCED)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 12. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 16. Observe the messages transmitted on Link A.

Part E: D-H Group Group 14 (ADVANCED)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 20. Observe the messages transmitted on Link A.

Part F: PRF PRF_HMAC_SHA2_256 (ADVANCED)

- 21. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 24. Observe the messages transmitted on Link A.

Part G: Integrity Algorithm AUTH_HMAC_SHA2_256_128 (ADVANCED)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 28. Observe the messages transmitted on Link A.

Part H: D-H Group Group 24 (ADVANCED)

- 29. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 30. Observe the messages transmitted on Link A.
- 31. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request protected with the accepted proposal to the NUT.
- 32. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_AES_CBC", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

This test case was deleted at revision 1.1.0.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_AES128_CBC", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 14" as accepted algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA2_256", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA2_256_128" and "D-H Group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part H

Step 30: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 24" as accepted algorithms.

869

Step 32: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.6.2: Cryptographic Algorithm Negotiation for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-Shared key.

References:

• [RFC 4306] - Sections 2.7 and 3.3

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

From part A to part G, TN1 transmits an IKE_AUTH request including a SA payload which contains the transforms as follows:

	IKE_AUTH exchanges Algorithms		
	Encryption	Integrity	Extended Sequence Numbers
Part A	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Part B	ENCR_AES_CTR	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Part C	ENCR_NULL	AUTH_HMAC_SHA1_96	No Extended Sequence Numbers
Part D	ENCR_3DES	AUTH_AES_XCBC_96	No Extended Sequence Numbers
Part E	ENCR_3DES	NONE	No Extended Sequence Numbers
Part F	ENCR_3DES	AUTH_HMAC_SHA1_96	Extended Sequence Numbers
Part G	ENCR_3DES	AUTH_HMAC_SHA2_256_128	No Extended Sequence Numbers

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
1	1	1	
1	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1	1	1	(Packet #1)
1		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
1	1	1	(Judgment #1)
1	1	1	
	< 	 	IKE_AUTH request (HDR, SK {IDi, AUTH, N, SAi2, TSi, TSr})
i	į	į	(Packet #2)
İ	j	> 	IKE_AUTH response (HDR, SK {IDr, AUTH, N, SAr2, TSi, TSr})
i	i	i	(Judgment #2)
i	i	i	
<	· +=======	======+	IPsec {Echo Request}
i	1	1	(Packet #3) (Judgment #3)
j		======+	> IPsec {Echo Reply}
İ	1	1	(Packet #4) (Judgment #4)
İ	İ	į	
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Packet #2: IKE_AUTH request

Packet #2 is same as Common Packet #5 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

Transmon.			
SA Transform	Next Payload	3 (more)	
	Reserved		0
	Transform Lengt	th	8
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		12 (AES_CBC)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part B:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform	Next Payload		3 (more)
	Reserved		0
	Transform Length		8
	Transform Type		1 (ENCR)
	Reserved		0
	Transform ID		13 (AES_CTR)
	SA Attribute	Attribute Type	14 (Key Length)
		Attribute Value	128

Part C:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	1 (ENCR)
	Reserved	0
	Transform ID	11 (ENCR_NULL)

Part D:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

-	1011 01111				
	SA Transform	Next Payload	3 (more)		
		Reserved	0		
		Transform Length	8		
		Transform Type	3 (INTEG)		
		Reserved	0		
		Transform ID	5 (AES_XCBC_96)		

Part E:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0

Part F:

SA Transform of Tranform Type ESN is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	1 (Extended Sequence Numbers)

Part G:

SA Transform of Tranform Type INTEG is replaced by the following SA Transfrom.

i i dii oiii.	runsironi.				
SA Transform	Next Payload	3 (more)			
	Reserved	0			
	Transform Length	8			
	Transform Type	3 (INTEG)			
	Reserved	0			
	Transform ID	12 (HMAC_SHA2_256_128)			

Part A: Encryption Algorithm ENCR_AES_CBC (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.

Part B: Encryption Algorithm ENCR_AES_CTR (ADVANCED)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TH2 transmits an Echo Request to TH1.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A.

Part C: Encryption Algorithm ENCR_NULL (ADVANCED)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 20. Observe the messages transmitted on Link A.
- 21. TH2 transmits an Echo Request to TH1.
- 22. Observe the messages transmitted on Link B.
- 23. TH1 transmits an Echo Reply to TH2.
- 24. Observe the messages transmitted on Link A.

Part D: Integrity Algorithm AUTH_AES_XCBC_96 (ADVANCED)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 28. Observe the messages transmitted on Link A.
- 29. TH2 transmits an Echo Request to TH1.
- 30. Observe the messages transmitted on Link B.
- 31. TH1 transmits an Echo Reply to TH2.
- 32. Observe the messages transmitted on Link A.

Part E: Integrity Algorithm NONE (ADVANCED)

- 33. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 34. Observe the messages transmitted on Link A.
- 35. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 36. Observe the messages transmitted on Link A.
- 37. TH2 transmits an Echo Request to TH1.
- 38. Observe the messages transmitted on Link B.
- 39. TH1 transmits an Echo Reply to TH2.
- 40. Observe the messages transmitted on Link A.

Part F: Extended Sequence Numbers (ADVANCED)

- 41. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 42. Observe the messages transmitted on Link A.
- 43. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 44. Observe the messages transmitted on Link A.
- 45. TH2 transmits an Echo Request to TH1.
- 46. Observe the messages transmitted on Link B.
- 47. TH1 transmits an Echo Reply to TH2.
- 48. Observe the messages transmitted on Link A.

Part G: Integrity Algorithm AUTH_HMAC_SHA2_256_128 (ADVANCED)

- 49. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 50. Observe the messages transmitted on Link A.
- 51. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request as described above to the NUT.
- 52. Observe the messages transmitted on Link A.
- 53. TH2 transmits an Echo Request to TH1.
- 54. Observe the messages transmitted on Link B.
- 55. TH1 transmits an Echo Reply to TH2.
- 56. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_AES_CBC", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part B

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_AES_CTR", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 14: Judgment #3

The NUT forwards an Echo Request.

Step 16: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part C

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_NULL", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 22: Judgment #3

The NUT forwards an Echo Request.

Step 24: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part D

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_AES_XCBC_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 30: Judgment #3

The NUT forwards an Echo Request.

Step 32: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part E

Step 34: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 36: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "NONE" and "No Extended Sequence Numbers" as accepted algorithms. However, the transform indicating "NONE" can be omitted.

Step 38: Judgment #3

The NUT forwards an Echo Request.

Step 40: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part F

Step 42: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 44: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "Extended Sequence Numbers" as accepted algorithms.

Step 46: Judgment #3

The NUT forwards an Echo Request.

Step 48: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Part G

Step 50: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 52: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA2_256_128" and "No Extended Sequence Numbers" as accepted algorithms.

Step 54: Judgment #3

The NUT forwards an Echo Request.

Step 56: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Poss	ihle	Pro	hl	eme	2 .
1 000	IDIC	110	w		Э,

• None.

Test IKEv2.SGW.R.1.1.6.3: Receiving Multiple Transforms for IKE_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with an multiple transforms payload.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See below

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the transforms as follows:

	IKE_SA_INIT exchanges Algorithms			
	Encryption PRF Integrity		Integrity	D-H Group
Part A	ENCR_AES_CBC ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	ENCR_3DES	PRF_AES128_CBC PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	Group 2
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 or Group 24, Group 2

Packet #1 IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1		
UDP Header	Same as the Common Packet #1		
IKEv2 Header	Same as the Common Packet #1		
SA Payload	Other fields are same as the common packet #1		
	SA Proposals	See SA Table below	

KE Payload	Same as the Common Packet #1
Ni, Nr Payload	Same as the Common Packet #1

Proposal #1	roposal #1 SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length		44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size # of Transform		0
			5	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
		SA Transform	Reserved	0
			Transform ID	3 (3DES)
			Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
		SA Transform	Transform ID	2 (HMAC_SHA1)
			Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (BASIC)

7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.

8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.6.4: Receiving Multiple Proposals for IKE_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with multiple proposals.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1 See below

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the proposals as follows:

	IKE_SA_INIT e	IKE_SA_INIT exchanges Algorithms				
	Proposals	Protocol ID	Encryption	PRF	Integrity	D-H Group
Part A	Proposal #1	IKE	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
rart A	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part B	Proposal #1	IKE	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2
Part B	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part C	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Part G	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part D	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 or Group 24
rant D	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2

Packet #1 IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1
UDP Header	Same as the Common Packet #1
IKEv2 Header	Same as the Common Packet #1
SA Payload	Other fields are same as the common packet #1

	SA Proposals		See SA Table below	
KE Pay	load	Same as the Common Packet #1		
Ni, Nr F	Payload	S	am	e as the Common Packet #1

Proposal #1	SA Proposal	Next Payload		2 (more	
		Reserved			
		Proposal Length		4	
		Proposal #			
		Protocol ID		1 (IKE	
		SPI Size			
		# of Transforms		5	
		SA Transform	Next Payload	3 (more	
			Reserved		
			Transform Length		
			Transform Type	1 (ENCF	
			Reserved	·	
			Transform ID	According to above configuratio	
		SA Transform	Next Payload	3 (more	
		O/ Transform	Reserved	o (more	
			Transform Length		
				2 (PRF	
			Transform Type Reserved	Z (PRI	
			Transform ID		
		SA Transform		According to above configuratio	
		OA Transform	Next Payload	· ·	
			Reserved		
			Transform Length	0 /NITE	
			Transform Type	3 (INTEG	
			Reserved		
			Transform ID	According to above configuration	
		SA Transform	Next Payload	0 (last	
			Reserved		
			Transform Length		
				Transform Type	4 (D-H
			Reserved		
			Transform ID	According to above configuration	
Proposal #2	SA Proposal	Next Payload		0 (last	
		Reserved			
		Proposal Lengt	h	4	
		Proposal #			
		Protocol ID		1 (IKE	
		SPI Size			
		# of Transforms	S		
		SA Transform	Next Payload	3 (more	
				Reserved	
			Transform Length		
			Transform Type	1 (ENCF	
			Reserved		
			Transform ID	3 (3DES	
		SA Transform	Next Payload	3 (more	
			Reserved		
			Transform Length		
			Transform Type	2 (PRF	
			Reserved		
			Transform ID	2 (HMAC_SHA1	
		SA Transform	Next Payload	3 (more	
			Reserved	, , , , , , , , , , , , , , , , , , ,	
			Transform Length		
			Transform Type	3 (INTEG	
			Reserved	3 (111120	
			Transform ID	2 (HMAA CHA1 04	
		SA Transform	Transform ID Next Payload	2 (HMAC_SHA1_96 0 (last	

7 01(011)			
	Transform Length	8	
	Transform Type	4 (D-H)	
	Reserved	0	
	Transform ID	2 (1024 MODP Group)	

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 2. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo-Random Functions (BASIC)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 4. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 6. Observe the messages transmitted on Link A.

Part D: Multiple D-H Groups (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload as described above.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Part D

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.6.5: Receiving Multiple Transforms for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles IKE_SA_INIT request with an unacceptable SA payload.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW	()
1	1	
<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	I	(Packet #1)
		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	I	(Judgment #1)
	I	
<		<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})</pre>
1	1	(Packet #2)
		<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})</pre>
	1	(Judgment #2)
	1	
V	V	

From part A to part D, TN1 transmits an IKE_AUTH request including a SA payload which contains the transforms as follows:

	IKE_AUTH exchanges Algorithms			
	Encryption	Integrity	ESN	
Part A	ENCR_AES_CBC ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN	
Part B	ENCR_3DES	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	No ESN	
Part C	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN No ESN	

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Common Packet #5
IF VO HEAUER	Same as the Common Facket #3 i

UDP Header	Same as th	e Common Packet #5
IKEv2 Header	Same as th	e Common Packet #5
E Payload	Same as th	e Common Packet #5
IDi Payload	Same as th	e Common Packet #5
AUTH Payload	Same as th	e Common Packet #5
SA Payload	Other fields are Same as th	e Common Packet #5
	SA Proposals	See below
TSi Payload	Same as th	e Common Packet #5
TSr Payload	Same as th	e Common Packet #5

Proposal #1 S	SA Proposal	Next Payload		0 (last)		
		Reserved		0		
		Proposal Length		40		
		Proposal #		1		
		Proposal ID		3 (ESP)		
		SPI Size		4		
		# of Transforms	3	4		
		SPI		Any		
		SA Transform	Next Payload	3 (more)		
			Reserved	0		
			Transform Length	8		
			Transform Type	According to above configuration		
			Reserved	0		
			Transform ID	According to above configuration		
		SA Transform	Next Payload	3 (more)		
			Reserved	0		
			Transform Length	8		
			Transform Type	1 (ENCR)		
					Reserved	0
			Transform ID	3 (3DES)		
		SA Transform	Next Payload	3 (more)		
			Reserved	0		
			Transform Length	8		
			Transform Type	3 (INTEG)		
			Reserved	0		
			Transform ID	2 (HMAC_SHA1_96)		
		SA Transform	Next Payload	0 (last)		
			Reserved	0		
			Transform Length	8		
			Transform Type	5 (ESN)		
			Reserved	0		
					Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.

- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

None.

Test IKEv2.SGW.R.1.1.6.6: Receiving Multiple Proposals for CHILD_SA

Purpose:

To verify an IKEv2 device properly handles CHILD_SA request with an unacceptable SA payload.

References:

• [RFC 4306] - Sections 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

• Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)	
		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	·>	(Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judament #1)
		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	·>	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
V	V	

Packet #1 See Common Packet #1

Packet #2 See below

TN1 transmits an IKE_AUTH request including a SA payload which contains the two proposals as follows:

	IKE_AUTH exchanges Algorithms				
	Proposal	Protocol ID	Encryption	Integrity	ESN
Part A	Proposal #1	ESP	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
rart A	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part B	Proposal #1	ESP	ENCR_3DES	AUTH_AES_XCBC_96	No ESN
	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part C	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN
	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN

• Packet #2: IKE_AUTH request

IPv6 Header	Same as th	ne Common Packet #5
UDP Header	Same as the	ne Common Packet #5
IKEv2 Header	Same as the	ne Common Packet #5
E Payload	Same as the	ne Common Packet #5
IDi Payload	Same as the	ne Common Packet #5
AUTH Payload	Same as the	ne Common Packet #5
SA Payload	Other fields are Same as the	ne Common Packet #5
	SA Proposals	See below
TSi Payload	Same as the	ne Common Packet #5
TSr Payload	Same as the	ne Common Packet #5

Proposal #1	SA Proposal	Next Payload		2 (more)	
	·	Reserved		0	
		Proposal Length		40	
		Proposal #		1	
		Proposal ID		3 (ESP)	
		SPI Size		4	
		# of Transforms	S	4	
		SPI		Any	
		SA Transform	Next Payload	3 (more)	
			Reserved	0	
			Transform Length	8	
			Transform Type	According to above configuration	
			Reserved	0	
			Transform ID	According to above configuration	
		SA Transform	Next Payload	3 (more)	
			Reserved	0	
			Transform Length	8	
			Transform Type	According to above configuration	
			Reserved	0	
			Transform ID	According to above configuration	
		SA Transform	Next Payload	0 (last)	
			Reserved	0	
			Transform Length	8	
			Transform Type	According to above configuration	
			Reserved	0	
			Transform ID	According to above configuration	
Proposal #2	SA Proposal	Next Payload		0 (last)	
		Reserved		0	
		Proposal Length		40	
		Proposal #		2	
		Proposal ID		3 (ESP)	
		SPI Size		4	
		# of Transforms		4	
		SPI		Any	
		SA Transform	Next Payload	3 (more)	
			Reserved	0	
			Transform Length	8	
			Transform Type	1 (ENCR)	
			Reserved	0	
			Transform ID	3 (3DES)	
		SA Transform	Next Payload	3 (more)	
		O/ Transform	Reserved	0	
			Transform Length	8	
			Transform Type	3 (INTEG)	
		SA Transform	Reserved	0	
			Transform ID	2 (HMAC_SHA1_96)	
			Next Payload	0 (last)	
			Reserved	0 (1831)	
				Transform Length	8

	1 0110111	
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request including a SA payload as described above to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including a SA Proposal with "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.6.7: Sending INVALID_KE_PAYLOAD

Purpose:

To verify an IKEv2 device properly handles a KE payload which has different D-H Group # from accepted D-H Group #.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration. Enable PFS.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
 < 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
 	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
<	CREATE_CHILD_SA request (HDR, SK {N, SA(DH#2, DH#14), Ni, KEi(DH#14), TSi, TSr} I (Packet #3)
	> CREATE_CHILD_SA response (HDR, SK { N(INVALID_KE_PAYLOAD(DH#2))}) (Judgment #3)
 < 	CREATE_CHILD_SA request (HDR, SK {N, SA(DH#2, DH#14), Ni, KEi(DH#2), TSi, TSr}) (Packet #4)
j	> CREATE_CHILD_SA response (HDR, SK {SA(DH#2), Nr, KEr(DH#2), TSi, TSr})
 V	(Judgment #4) V
V	V
N: REKEY_SA	
It is possi	ble to use DH#24 instead of DH#14.

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below
Packet #4	See below

Packet #3: CREATE_CHILD_SA request for rekeying CHILD_SA

IPv6 Header	Same a	as the Common Packet #15
UDP Header	Same a	as the Common Packet #15
IKEv2 Header	Same a	as the Common Packet #15
E Payload	Same a	as the Common Packet #15
N Payload	Same a	as the Common Packet #15
SA Payload	Other fields are same a	as the Common Packet #15
	SA Proposals	See SA Table below
Ni, Nr Payload	Other fields are same a	as the Common Packet #15
	Next Payload	34 (KE)
KEi Payload	Next Payload	44 (TSi)
	Critical	0
	Reserved	0
	Payload Length	264
	DH Group #	14
	Reserved	0
	Key Exchange Data	DH#14 public key value
TSi Payload	Same as the Common Packet #15	
TSr Payload	Same as the Common Packet #15	

SA Payloads

SA Proposal	Next Payload		0 (last)
arrange and	Reserved		0
	Proposal Length	າ	48
	Proposal #	<u>- </u>	1
	Protocol ID		1 (IKE)
	SPI Size		0
	# of Transforms	1	5
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	1 (ENCR)
		Reserved	0
		Transform ID	3 (3DES)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	2 (PRF)
		Reserved	Ó
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	14 (2048 MODP Group)

Packet #4: CREATE_CHILD_SA request for rekeying CHILD_SA

IPv6 Header	Other fields are same as the Common Packet #15
UDP Header	Other fields are same as the Common Packet #15
IKEv2 Header	Other fields are same as the Common Packet #15
E Payload	Other fields are same as the Common Packet #15

N Payload	Other fields are same as the Common Packet #15		
SA Payload		Same as Packet #3	
Ni, Nr Payload	Other fields are same as the Common Packet #15		
	Next Payload	34 (KE)	
KEi Payload	Other fields are same as the Packet #3		
	DH Group # 2		
	Key Exchange Data DH#2 public key value		
TSi Payload	Same as the Common Packet #15		
TSr Payload	Same as the Common Packet #15		

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs. The CREATE_CHILD_SA contains a D-H Group transform to use D-H Group 2 and D-H Group 14, and a Key Exchange payload which contains 14 (D-H Group 14) as DH Group # field and the Key Exchage Data. It is possible to use D-H Group 24 instead of D-H Group 14.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of CREATE_CHILD_SA response indicating INVALID_KE_PAYLOAD from the NUT, TN1 retransmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs. The CREATE_CHILD_SA contains a D-H Group transform to use D-H Group 2 and D-H Group 14, and a Key Exchange payload which contains 2 (D-H Group 2) as DH Group # field and the Key Exchage Data. It is possible to use D-H Group 24 instead of D-H Group 14.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including a Notify payload of type INVALID_KE_PAYLOAD which contains 2 (D-H Group 2) as Notification Data.

Step 8: Judgment #4

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96", "No Extended Sequence Numbers" and "D-H Group 2" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.6.8: Sending INVALID_KE_PAYLOAD in Initial Exchange

Purpose:

To verify an IKEv2 device properly handles KE payload which has different D-H Group # from accepted D-H Group #.

References:

- [RFC 4306] Sections 2.7, 3.4 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See below
Packet #2	See Common packet #1

Packet #1: IKE_SA_INIT request

IPv6 Header	Same as the Common Packet #1		
UDP Header	Same as the Common Packet #1		
IKEv2 Header	Same as the Common Packet #1		
SA Payload	Other fields are same as the common packet #1		
	SA Proposals	See SA Table below	
KEi Payload	Other fields are same as the common packet #1		
	DH Group # 14		
	Key Exchange Data	DH#14 public key value	
Ni, Nr Payload	Same as the Common Packet #1		

SA Payloads

SA Proposal	Next Payload		0 (last)
1	Reserved Proposal Length Proposal #		0
			48
			1
	Protocol ID		1 (IKE)
	SPI Size		0
	# of Transforms		5
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	1 (ENCR)
		Reserved	Ó
		Transform ID	3 (3DES)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	2 (PRF)
		Reserved	Ó
		Transform ID	2 (HMAC_SHA1)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	3 (INTEG)
		Reserved	0
		Transform ID	2 (HMAC_SHA1_96)
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	2 (1024 MODP Group)
	SA Transform	Next Payload	0 (last)
		Reserved	0
		Transform Length	8
		Transform Type	4 (D-H)
		Reserved	0
		Transform ID	14 (2048 MODP Group)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request including a SA payload which contains a D-H Group transform proposes using D-H Group 2 and D-H Group 14, and a Key Exchange payload which contains 14 (D-H Group 14) as DH Group # field and the Key Exchange Data. It is possible to use D-H Group 24 instead of D-H Group 14.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including a Notify payload of type INVALID_KE_PAYLOAD which contains 2 (D-H Group 2) as Notification Data. The message's IKE_SA Responder's SPI value is set to zero.

Step 4: Judgment #2

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.1.6.9: Creating an IKE_SA without a CHILD_SA

Purpose:

To verify that an IKEv2 device can handles a failure of creating a CHILD_SA during the IKE_AUTH exchange.

References:

• [RFC 4718] - Sections 4.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
I	
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
I	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
I	(Judgment #1)
I	
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
!	(Packet #2)
	> IKE_AUTH response (HDR, SK {N(NO_PROPOSAL_CHOSEN)})
!	(Judgment #2)
	LINEODNATIONAL request (UDD CV ())
<	INFORMATIONAL request (HDR, SK {})
	(Packet #3)
	> INFORMATIONAL response (HDR, SK {})
	(Judgment #3)
I V	I V
٧	Y

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #17

Packet #2: IKE_AUTH request

Packet #2 is same as Common Packet #5 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type ENCR is replaced by the following SA Transfrom.

Transform of Transorm Type Liver is replaced by the for			
	SA Transform	Next Payload	3 (more)
		Reserved	0
		Transform Length	8

Transform Type		1 (ENCR)
Reserved		0
Transform ID		12 (AES_CBC)
SA Attribute	Attribute Type	14 (Key Length)
	Attribute Value	128

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH request with unacceptable SA proposal for the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including a Notify type of NO_PROPOSAL_CHOSEN.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

None

Group 1.7. Traffic Selector Negotiation

Test IKEv2.SGW.R.1.1.7.1: Narrowing Traffic Selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

• [RFC4306] - Section 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

		Traffic Selector				
		Source			Destination	
	Address	Next Layer	Port	Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TH2	ANY	ANY	NUT	ANY	ANY
Outbound	NUT	ANY	ANY	TH2	ANY	ANY

The other packets are allowed to BYPASS IPsec protection.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2	TH3
(Host)	(SGW)	(SGW)	(Host)	(Host)
	 < 	 		 IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	 	 > 		(Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 	 		 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
		>		IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
< 	 	 		IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 	 		IPsec {Echo Request} (Packet #5) (Judgment #5) > IPsec {Echo Reply}
l V	 	l l V	 	(Packet #6) (Judgment #6) V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below

• Packet #5: ICMPv6 Echo Request

IPv6 Header	Same as the Common Packet #21			
ESP	Same as the Common Packet #21			
IPv6 Header	Source Address	TH3's Global Address		
	Destination Address TH1's Global Address			
ICMPv6 Header	Same as the Common Packet #21			

• Packet #6: ICMPv6 Echo Request

IPv6 Header	Source Address	TH1's Global Address	
	Destination Address	TH3's Global Address	
ICMPv6 Header	Same as the Common Packet #25		

Part A (BASIC)

- 1. TN1 sends an IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 sends an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request packet to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply packet to TH2.

- 8. Observe the messages transmitted on Link A.
- 9. TH3 transmits an Echo Request to TH1.
- 10. Observe the messages transmitted on Link B.
- 11. TH1 transmits an Echo Request to TH3.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. The Traffic Selector is narrowed to allow only address range of TH2.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Request with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT never forwards an Echo Request.

Step 12: Judgment #6

The NUT forwards an Echo Request without IPsec ESP.

Possible Problems:

Because the destination address of Echo Request is the TN itself, TN may respond to
Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of
sending Echo Request.

Test IKEv2.SGW.R.1.1.7.2: TS_UNACCEPTABLE

Purpose:

To verify an IKEv2 device properly handles the Traffice Selector.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

• Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

		Traffic Selector				
	Source			Destination		
	Address	Next Layer	Port	Address	Next Layer	Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TH2	ANY	ANY	NUT	ANY	ANY
Outbound	NUT	ANY	ANY	TH2	ANY	ANY

The other packets are allowed to BYPASS IPsec protection.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

(SGW) (SGW)	NUT	TN1
	(SGW)	(SGW)
	<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
(Judgment #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2) CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi, TSi, TSi, TSi, TSi, TSi, TSi, TS	į	(Packet #1)
(Judgment #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2) CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi, TSi, TSi, TSi, TSi, TSi, TSi, TSi, TS	j	> IKE SA INIT response (HDR. SAr1. KEr. Nr)
	i	,
	i	(Saagmont "T)
		I KE AUTH request (HDR SK (ID: AUTH SA:2 TS: TSr)
		,
		(Juagiliett #2)
	ļ	OPENTE CHILD ON TRANSPORT (HDD OK (N. OA N. KE' TO' TO')
> CREATE_CHILD_SA response (HDR, SK {N(TS_UNACCEPTABLE)})	<	
	ļ.	
(Judgment #3) V V		
V		(Judgment #3)
·	V	V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #5
UDP Header	Same as the	Common Packet #5
IKEv2 Header	Same as the	Common Packet #5
E Payload	Same as the	Common Packet #5
IDi Payload	Same as the	Common Packet #5
AUTH Payload	Same as the	Common Packet #5
N Payload	Same as the	Common Packet #5
SA Payload	Same as the	Common Packet #5
TSi Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH2's Global Address on Link X
		Ending Address	TH2's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #9
UDP Header	Same as the	Common Packet #9
IKEv2 Header	Same as the	Common Packet #9
E Payload	Same as the	Common Packet #9
SA Payload	Same as the	Common Packet #9
Ni, Nr Payload	Same as the	Common Packet #9
TSi Payload	Other fields are same as the	Common Packet #9
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #9
	Traffic Selectors	See below

Ī	TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
			IP Protocol ID	0 (any)
			Selector Length	40
			Start Port	0
			End Port	65535
			Starting Address	TH3's Global Address on Link X
			Ending Address	TH3's Global Address on Link X

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Part A (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request including ICMPv6 (58) as IP Protocol ID value in Traffic Selector Payload.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including a Notify payload of type TS_UNACCEPTABLE.

Possible Problems:

Test IKEv2.SGW.R.1.1.7.3: Narrowing Traffic Selectors

Purpose:

To verify an IKEv2 device allows the responder to choose a subset of the traffic proposed by the initiator.

References:

- [RFC4306] Section 2.8
- [RFC4718] Section 4.10

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration except Traffic Selector. Traffic Selector should be configured as following.

	Traffic Selector						
		Source			Destination		
	Address Next Layer Port		Address	Next Layer	Port		
	Range Protocol Range		Range	Protocol	Range		
Inbound	TH2	ANY	ANY	NUT	ANY	ANY	
Outbound	NUT	ANY	ANY	TH2	ANY	ANY	

The other packets are allowed to BYPASS IPsec protection.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2	TH3
(Host)	(SGW)	(SGW)	(Host)	(Host)
	 < 	 		
		> 		(Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 	· 		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	 	> 		IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 	 	 >	IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
X	 	 		IPsec {Echo Request} (Packet #5) (Judgment #5) > IPsec {Echo Reply}
i I V	 	l V	l I V	(Packet #6) (Judgment #6)

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #5
UDP Header	Same as the	Common Packet #5
IKEv2 Header	Same as the	Common Packet #5
E Payload	Same as the	Common Packet #5
IDi Payload	Same as the	Common Packet #5
AUTH Payload	Same as the	Common Packet #5
SA Payload	Same as the	Common Packet #5
TSi Payload Other fields are same a		Common Packet #5
	Traffic Selectors	See below
TSr Payload Other fields are same as the		Common Packet #5
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH2's Global Address on Link X
		Ending Address	TH2's Global Address on Link X
	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40

	Start Port	0			
	End Port	65535			
	Starting Address	TH3's Global Address on Link X			
	Ending Address	TH3's Global Address on Link X			

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link A
		Ending Address	TH1's Global Address on Link A

Packet #5: ICMPv6 Echo Request

IPv6 Header	Same as the Common Packet #21			
ESP	Same as the Common Packet #21			
IPv6 Header	Source Address	TH3's Global Address		
	Destination Address TH1's Global Addre			
ICMPv6 Header	Same as the Common Packet #21			

• Packet #6: ICMPv6 Echo Request

IPv6 Header	Source Address	TH1's Global Address	
	Destination Address	TH3's Global Address	
ICMPv6 Header	Same as the Common Packet #25		

Part A (BASIC)

- 1. TN1 sends an IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 sends an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request packet to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply packet to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TH3 transmits an Echo Request to TH1.
- 10. Observe the messages transmitted on Link B.
- 11. TH1 transmits an Echo Request to TH3.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. The Traffic Selector is narrowed to allow the traffic from/to TH2.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Request with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT never forwards an Echo Request.

Step 12: Judgment #6

The NUT forwards an Echo Request without IPsec ESP.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TH2 can send Echo Reply to TH1 instead of sending Echo Request.

Group 1.8. Error Handling

Test IKEv2.SGW.R.1.1.8.1: INVALID_IKE_SPI

This test case was deleted at revision 1.1.0.

Test IKEv2.SGW.R.1.1.8.2: INVALID_SYNTAX

This test case was deleted at revision 1.1.0.

Test IKEv2.SGW.R.1.1.8.3: INVALID_SELECTORS

This test case was deleted at revision 1.1.0.

Group 1.10 Authentication of the IKE_SA

Test IKEv2.SGW.R.1.1.10.1: Sending Certificate Payload

Purpose:

To verify an IKEv2 device handles a CERTREQ payload and transmits a CERT payload propoerly.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Land	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	NUT's global address on Link A
Local	Part B	X.509 Certificate - Signature	ID_FQDN	nut.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	nut@example.com

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)	
1		
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)	
Ì	(Packet #1)	
j	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)	
İ	(Judgment #1)	
i		
<	IKE_AUTH request (HDR, SK {IDi, CERTREQ, AUTH, SAi2, TSi, TSi	r}
i	(Packet #2)	
j	> IKE_AUTH response (HDR, SK {IDr, CERT, AUTH, SAr2, TSi, TSr}))
i	(Judgment #2)	
i	j i i	
V	V	

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2: IKE_AUTH request

Same as the C	ommon Packet #5
Same as the C	ommon Packet #5
Same as the C	ommon Packet #5
Next Payload	38 (CERTREQ)
Oter fields are same as the C	ommon Packet #5
	See below
Same as the C	ommon Packet #5
Same as the C	ommon Packet #5
Same as the C	ommon Packet #5
Same as the C	ommon Packet #5
	Same as the C Same as the C Next Payload Oter fields are same as the C Same as the C Same as the C Same as the C

CERTREQ Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Authority	any

Part A: ID IPV6 ADDR (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERTREQ payload to the NUT.
- 4. Observe the messages transmitted on Link A.

Part B: ID_FQDN (ADVANCED)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.
- 7. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERTREQ payload to the NUT.
- 8. Observe the messages transmitted on Link A.

Part C: ID_RFC822_ADDR (ADVANCED)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a CERTREO payload to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response. The response includes an ID payload with ID_IPV6_ADDR and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response. The response includes an ID payload with ID_FQDN and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response. The response includes an ID payload with ID_RFC822_ADDR and a CERT payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding and the NUT's certificate as Certificate Data.

Possible Problems:

Test IKEv2.SGW.R.1.1.10.2: Sending Certificate Request Payload

Purpose:

To verify an IKEv2 device properly transmits CERTREQ payload.

References:

• [RFC 4306] - Sections 1.2 and 3.7

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Domoto	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	TN1's global address on Link A
Remote	Part B	X.509 Certificate - Signature	ID_FQDN	tn.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	tn@example.com

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
-----------	----------------------

Part A:ID_IPV6_ADDR (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Part B:ID_FQDN (ADVANCED)

- 3. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 4. Observe the messages transmitted on Link A.

Part C:ID_RFC822_ADDR (ADVANCED)

- 5. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Part B

Step 4: Judgment #1

The NUT transmits an IKE_SA_INIT response with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Part C

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response with a CERTREQ payload which contains 4 (X.509 Certificate - Signature) as Certificate Encoding.

Possible Problems:

Test IKEv2.SGW.R.1.1.10.3: RSA Digital Signature

Purpose:

To verify an IKEv2 device authenticates the corresponding node by RSA Digital Signature.

References:

• [RFC 4306] - Sections 1.2 and 3.8

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the following IKE peer configuration.

		Authentication Method	ID Type	ID Data
Remote	Part A	X.509 Certificate - Signature	ID_IPV6_ADDR	TN1's global address on Link A
Kemote	Part B	X.509 Certificate - Signature	ID_FQDN	tn.example.com
	Part C	X.509 Certificate - Signature	ID_RFC822_ADDR	tn@example.com

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
1		1	
1	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
1		1	(Packet #1)
1		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr, CERTREQ)
1		1	(Judgment #1)
1		1	
1	<		IKE_AUTH request (HDR, SK {IDi, CERT, AUTH,
1		1	SAi2, TSi, TSr})
1		1	(Packet #2)
1		>	IKE_AUTH response (HDR, SK {IDr, AUTH,
1		1	SAr2, TSi, TSr})
1		1	(Judgment #2)
1		1	
<	+=======	======+	IPsec {Echo Request}
1		1	(Packet#3) (Judgment #3)
		======+	> IPsec {Echo Reply}
1		1	(Packet #4) (Judgment #4)
1		1	
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #19

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the Cor	nmon Packet #5	
UDP Header	Same as the Common Packet #5		
IKEv2 Header	Same as the Con	nmon Packet #5	
E Payload	Same as the Common Packet #5		
IDi Payload	Next Payload	37 (CERT5	
	Oter fields are same as the Cor	nmon Packet #5	
CERT Payload	See below		
AUTH Payload	Same as the Common Packet #5		
N Payload	Same as the Common Packet #5		
SA Payload	Same as the Common Packet #5		
TSi Payload	Same as the Common Packet #5		
TSr Payload	Same as the Common Packet #5		

CERT Payload	Next Payload	39 (AUTH)
	Critical	0
	Reserved	0
	Payload Length	Any
	Certificate Encoding	4 (X.509 Certificate - Signature)
	Certificate Data	any

Part A: ID_IPV6_ADDR (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with an IDi payload as described above and a CERT payload to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.

Part B: ID_FQDN (ADVANCED)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with an IDi payload as described above and a CERT payload to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TH2 transmits an Echo Request to TH1.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A.

Part C: ID RFC822 ADDR (ADVANCED)

- 17. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 18. Observe the messages transmitted on Link A.
- 19. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with an IDi payload as described above and a CERT payload to the NUT.
- 20. Observe the messages transmitted on Link A.
- 21. TH2 transmits an Echo Request to TH1.
- 22. Observe the messages transmitted on Link B.
- 23. TH1 transmits an Echo Reply to TH2.
- 24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Part B

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 14: Judgment #3

The NUT forwards an Echo Request.

Step 16: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Part C

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 20: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 22: Judgment #3

The NUT forwards an Echo Request.

Step 24: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

Test IKEv2.SGW.R.1.1.10.4: HEX string PSK

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key.

References:

• [RFC 4306] - Sections 2.15

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the following IKE peer configuration.

	Authentication Key Value	
Local	0xabadcafeabadcafeabadcafe (128 bit binary string)	

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #2	See Common Packet #5

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Group 1.11 Invalid values

Test IKEv2.SGW.R.1.1.11.1: Non zero RESERVED fields in IKE_SA_INIT request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	All RESERVED fields are set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.1.11.2: Non zero RESERVED fields in IKE_AUTH request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #5	
	All RESERVED fields are set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.1.11.3: Version bit is set

Purpose:

To verify an IKEv2 device ignores the content of Version in IKE messages.

References:

• [RFC 4306] - Sections 3.1

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	Version bit is set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request whose Version bit is set to one.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Possible Problems:

Test IKEv2.SGW.R.1.1.11.4: Response bit is set

Purpose:

To verify an IKEv2 device ignores an IKE request message whose Response bit is set.

References:

• [RFC 4306] - Sections 2.21

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
	Response bit is set to one.	

Part A (BASIC)

- 1. TN starts to negotiate with NUT by sending IKE_SA_INIT request whose Response bit is set to one.
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT never responds with an IKE_SA_INIT response to an IKE_SA_INIT request from the TN1.

Possible Problems:

Test IKEv2.SGW.R.1.1.11.5: Unrecognized Notify Message Type

Purpose:

To verify an IKEv2 device ignores the unrecognized Notify Message Type in IKE messages.

References:

• [RFC 4306] - Sections 3.10.1

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 		 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 <		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr, N})
	 	> 	(Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 	 =====+ =====+	IPsec {Echo Request}
V	V	V	V
N: Notify P	N: Notify Payload with unrecognized Notify Message Type		

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Packet #2: IKE_AUTH request

IPv6 Header	All fields are same as Common Packet #5
UDP Header	All fields are same as Common Packet #5
IKEv2 Header	All fields are same as Common Packet #5
F Payload	All fields are same as Common Packet #5

IDi Payload	All fields are sa	me as Common Packet #5
AUTH Payload	All fields are sa	me as Common Packet #5
SA Payload	All fields are sa	me as Common Packet #5
TSi Payload	All fields are same as Common Packet #5	
TSr Paylaod	Next Payload	41 (Notify)
	Other fields are same as Common Packet #5	
N Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	8
	Procotol ID	0
	SPI Size	0
	Notify Message Type	See each part description.

Part A: Unrecognized Notify Message Type of error 16383 (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a Notify payload of unrecognized Notify Message Type value (16383) to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.

Part B: Unrecognized Notify Message Type of status 65535 (BASIC)

- 9. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request with a Notify payload of unrecognized Notify Message Type value (65535) to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TH2 transmits an Echo Request to TH1.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH HMAC SHA1 96.

Part B

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 14: Judgment #3

The NUT forwards an Echo Request.

Step 16: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using ENCR_3DES and AUTH_HMAC_SHA1_96.

Possible Problems:

Group 2. The CREATE_CHILD_SA Exchange

Group 2.1. Header and Payload Formats

Test IKEv2.SGW.R.1.2.1.1: Receipt of CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device transmits a CREATE_CHILD_SA response using properly Header and Payloads format

References:

- [RFC 4306] Sections 1.1.2,1.2 and 3.3.2
- [RFC 4307] Sections 3

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #15

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 6. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 12. Observe the messages transmitted on Link A.

Part C: SA Payload Format (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 18. Observe the messages transmitted on Link A.

Part D: Nonce Payload Format (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 24. Observe the messages transmitted on Link A.

Part E: TSi Payload Format (BASIC)

- 25. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 26. Observe the messages transmitted on Link A.
- 27. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH request to the NUT.
- 28. Observe the messages transmitted on Link A.
- 29. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 30. Observe the messages transmitted on Link A.

Part F: TSr Payload Format (BASIC)

- 31. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 32. Observe the messages transmitted on Link A.
- 33. After a reception of IKE_SA_INIT response from the NUT, TN1 transmits IKE_AUTH

- request to the NUT.
- 34. Observe the messages transmitted on Link A.
- 35. After reception of IKE_AUTH response from the NUT, TN1 transmits CREATE_CHILD_SA request to the NUT to rekey CHILD_SAs.
- 36. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted IKE Header containing following values:

Figure 160 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to CREATE_CHILD_SA (36).
- A Flags field set to (00000100)2 = (4)10.
- A Message ID field set to the same value as corresponding IKEv2 request message's Message ID.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Encrypted Payload containing following values:

Figure 161 Encrypted payload

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR 3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

Figure 162 SA Payload contents

The NUT transmits a CREATE_CHILD_SA response including properly formatted SA Payload containing following values (refer following figures):

Figure 163 SA Payload format

- A Next Payload field set to Nr Payload (40).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 164 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 165 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including

Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.

- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted Nonce Payload containing following values:

Figure 166 Nonce Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Nonce Data field set to random data generated by the transmitting entity. The size of the Nonce must between 16 and 256 octets.

Part E

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 30: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted TSi Payload containing following values:

Figure 167 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 168 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix Y.
- A Ending Address field set to greater that or equal to Prefix Y.

Part G

Step 32: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 34: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 36: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including properly formatted TSr Payload containing following values:

Figure 169 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to the number of actual traffic selectors.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 170 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.

- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- An Ending Address field set to less than or equal to Prefix B.

Possible Problems:

• CREATE_CHILD_SA response has following packet format.It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

[N(IPCOMP_SUPPORTED)], [N(USE_TRANSPORT_MODE)], [N(ESP_TFC_PADDING_NOT_SUPPORTED)], [N(NON_FIRST_FRAGMENTS_ALSO)], SA, Nr, [KEr], TSi, TSr, [N(ADDITIONAL_TS_POSSIBLE)]

• Each of transforms can be located in the any order.

Group 2.2. Use of Retransmission Timers

Test IKEv2.SGW.R.1.2.2.1: Receipt of CREATE_CHILD_SA requests

Purpose:

To verify an IKEv2 device retransmits CREATE_CHILD_SA request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 2.1, 2.2 and 2.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	11
(SGW) (SG	
	··· <i>)</i>
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i i	(Packet #1)
>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
>	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	(Judgment #2)
	CDEATE CHILD CA TANDACA (UDD CV (N. CA N. TC: TC-1)
. '	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #3)
	CREATE_CHILD_SA Rsponce Catl (HDR, SK {SA, Nr, TSi, TSr})
i i	(Judgment #3)
	wart until retraine times exprise
>	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #4)
	(oddymonic #+)
<	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
. '	(Packet #4)
>	CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
	(Judgment #5)
l I V	
·	
N: REKEY_SA	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #15
Packet #4	See Common Packet #15
	(same Message ID as Pcket #3)

Part A: (BASIC)

- 1. TN1 transmits IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits CREATE CHILD SA request.
- 6. Observe the messages transmitted on Link A.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits the same CREATE_CHILD_SA request packet as Step 5.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH response including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 7: Judgment #4

The NUT never retransmits a CREATE_CHILD_SA response which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

Step 9: Judgment #5

The NUT retransmits a CREATE_CHILD_SA response which has the same Message ID value as the previous CREATE_CHILD_SA request's Message ID value in IKE Header.

944

Possible Problems:

none

Group 2.3. State Synchronization and Connection Timeouts

Test IKEv2.SGW.R.1.2.3.1: Receiving Delete Payload for Multiple CHILD_SA

Purpose:

To verify an IKEv2 device transmits a Delete Payload, when CHILD_SAs are deleted.

References:

• [RFC 4306] - Sections 2.4 and 3.11

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
1	
(SGW)	(SGW)
	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
<	CREATE_CHILD_SA request (HDR, SK {SA, Ni, TSi, TSr}) (Packet #3)
	> CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #3)
	INFORMATIONAL request (HDR, SK {D}) (Packet #4)
	> INFORMATIONAL request (HDR, SK {D}) (Judgment #4)
V	l V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #5
UDP Header	Same as the	Common Packet #5
IKEv2 Header	Same as the	Common Packet #5
E Payload	Same as the	Common Packet #5
IDi Payload	Same as the	Common Packet #5
AUTH Payload	Same as the	Common Packet #5
N Payload	Same as the	Common Packet #5
SA Payload	Same as the	Common Packet #5
TSi Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Packet #5	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

-			
TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	6 (TCP)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #9
UDP Header	Same as the	Common Packet #9
IKEv2 Header	Same as the	Common Packet #9
E Payload	Same as the	Common Packet #9
N Payload	Same as the	Common Packet #9
SA Payload	Same as the	Common Packet #9
Ni, Nr Payload	Same as the	Common Packet #9
TSi Payload	Other fields are same as the	Common Packet #9
	Traffic Selectors	See below
TSr Payload	Other fields are same as the Common Packet #9	
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix Y:0000:0000:0000:0000
		Ending Address	Prefix Y:ffff:ffff:ffff

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	58 (ICMPv6)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	Prefix B:0000:0000:0000:0000
		Ending Address	Prefix B:ffff:ffff:ffff

Packet #4: INFORMATIONAL request

IPv6 Header		Same as the Common Packet #17
UDP Header	Same as the Common Packet #17	
IKEv2 Header		Same as the Common Packet #17
E Payload		Other fields are same as the Common Packet #17
	Next Payload	42 (Delete)
Delete Payload	Next Payload 0 (last)	
	Critical	0
	Reserved	0
	Payload Length	16
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	2
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange
		SPI negotiated by CREATE_CHILD_SA exchange

Part A: (ADVANCED)

- 1. TN starts to negotiate with NUT by sending IKE SA INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to establish a new CHILD_SA to the NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an INFORMATIONAL request with a Delete payload including the first negotiated CHILD_SA's inbound SPI and the second negotiated CHILD_SA's inbound SPI.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 8: Judgment #4

The NUT transmits an INFORMATIONAL response with delete payload for SPIs which are negotiated by Initial Exchange and CREATE_CHILD_SA exchange.

Possible Problems:

• INFORMATIONAL response from NUT may not contain Delete Payload by implementation policy. This behavior is defined at section 1.4 in RFC 4306 as an exception.

Group 2.4. Cryptographic Algorithm Negotiation

Test IKEv2.SGW.R.1.2.4.1: Sending NO_PROPOSAL_CHOSEN

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with an unacceptable SA payload.

References:

- [RFC 4306] Sections 2.7 and 3.10.1
- [RFC 4718] Sections 2.1 and 2.2

Test Setup:

- Network Topology
- Connect the devices according to the Common Topology.

 Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	Γ TN	1
_		
(SGW	V) (SG	W)
	 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	 	·· · · · · · · · · · · · · · · · ·
	ו 	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)</pre>
j-	 	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)</pre>
 	ו 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #3)
j-	X [CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #3)
	 	or CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)}) (Judgment #3)
V	I V	
N: F	REKEY_SA	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #15
UDP Header	Same as the	Common Packet #15
IKEv2 Header	Same as the	Common Packet #15
E Payload	Same as the	Common Packet #15
N Payload	Same as the	Common Packet #15
N Payload	Same as the	Common Packet #15
SA Payload	Other fields are same as the	Common Packet #15
	SA Proposals	See below
Ni, Nr Payload	Same as the	Common Packet #15
TSi Payload	Same as the	Common Packet #15
TSr Payload	Same as the	Common Packet #15

Proposal #1	SA Proposal	Next Payload		0 (last)		
		Reserved	0			
		Proposal Length		Proposal Length		36
		Proposal #		1		
		Proposal ID		3 (ESP)		
		SPI Size		4		
		# of Transforms		3		
		SPI		any		
		SA Transform	Next Payload	3 (more)		
			Reserved	0		
			Transform Length	8		
			Transform Type	1 (ENCR)		
			Reserved	0		
			Transform ID	12 (AES_CBC)		
		SA Transform	Next Payload	3 (more)		
			Reserved	0		
			Transform Length	8		
			Transform Type	3 (INTEG)		
			Reserved	0		
			Transform ID	5 (AES_XCBC_96)		
		SA Transform	Next Payload	0 (last)		
			Reserved	0		
			Transform Length	8		
			Transform Type	5 (ESN)		
			Reserved	0		
			Transform ID	1 (ESN)		

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to rekey the established CHILD_SAs to the NUT. The CREATE_CHILD_SA request includes a SA payload with a proposal unaccepted by the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT does not transmit a CREATE_CHILD_SA response or transmits a CREATE_CHILD_SA response including a Notify payload of type NO PROPOSAL CHOSEN.

Possible Problems:

None.

Group 2.5. Rekeying CHILD_SA Using a CREATE_CHILD_SA exchange

Test IKEv2.SGW.R.1.2.5.1: Close the replaced CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the CREATE_CHILD_SA Exchanges to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
- In each part, configure the devices according to the Common Configuration.
 Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 	 > 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 	 > 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr} (Judgment #2)
 < 	 	 	IPsec {Echo Request} (Packet #3) (Judgment #3) > IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 < 	 	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr} (Packet #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #5)
 	 < 	 	INFORMATIONAL request (HDR, SK {D}) (Packet #6) INFORMATIONAL response (HDR, SK {D}) (Judgment #6)
V N: REKEY_SA	, V	V	V V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #15
Packet #6	See below

Packet #6: INFORMATIONAL request

IPv6 Header		Same as the Common Packet #17
UDP Header		Same as the Common Packet #17
IKEv2 Header		Same as the Common Packet #17
E Payload	Other fields ar	e same as the Common Packet #17
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	12
	Procotol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request including a Delete payload with the old CHILD SA's SPI value to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT transmits an INFORMATIONAL response including a Delete payload with the old CHILD_SA's SPI value to the TN1.

Possible Problems:

• None.

Test IKEv2.SGW.R.1.2.5.2: Use of the new CHILD_SA

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 	i	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 	I	IPsec {Echo Request} (Packet #3) (Judgment #3) > IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 < 	 >	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #5)
	 < 	 	INFORMATIONAL request (HDR, SK {D}) (Packet #6) INFORMATIONAL response (HDR, SK {D}) (Judgment #6)
	 +=====================	 -======+ -======+ 	IPsec {Echo Request} (new CHILD_SA) (Packet #7) (Judgment #7) > IPsec {Echo Reply} (new CHILD_SA) (Packet #8) (Judgment #8)
V N: REKEY_SA	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #15
Packet #6	See below
Packet #7	See Common Packet #21
	(encrypted by the new CHILD_SA)
Packet #8	See Common Packet #25

Packet #6: INFORMATIONAL request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
UDP Header	Source Port	500
	Destination Port	500
IKEv2 Header	IKE_SA Initiator's SPI	any
	IKE_SA Responder's SPI	any
	Next Payload	46 (E)
	Major Version	2
	Minor Version	0
	Exchange Type	37 (INFORMATIONAL)
	X (bits 0-2 of Flags)	0
	I (bit 3 of Flags)	any
	V (bit 4 of Flags)	0
	R (bit 5 of Flags)	0
	X (bits 6-7 Flags)	0
	Message ID	0
	Length	any
E Payload	Next Payload	42 (D)
	Critical	0
	Reserved	0
	Payload Length	any
	Initialization Vector	The same value as block length of the underlying encryption algorithm
	Encrypted IKE Payloads	Subsequent payloads encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Integrity Checksum Data	The Cryptographic checksum of the entire message
D Payload	Next Payload	0
	Critical	0
	Reserved	0
	Payload Length	12
	Protocol ID	3 (ESP)
	SPI Size	4
	# of SPIs	1
	Security Parameter Index	NUT's inbound CHILD_SA SPI value to be deleted

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the first negotiated algorithms to the NUT.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.

- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with a Delete payload to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TH2 transmits an Echo Request to TH1. TH1. TN1 forwards an Echo Request using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT transmits an INFORMATIONAL response with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the NUT's inbound SPI value to be deleted as SPI value.

Step 14: Judgment #7

The NUT forwards an Echo Request.

Step 16: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.5.3: Receiving Multiple Transform

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
i	(Packet #1)
i	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	, – – , , , , , , , ,
į.	(Judgment #1)
I	I
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}
1	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSi
i	(Judgment #2)
i	(= = 9 = = =)
<	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSi
	, – – , , , , , , , , ,
!	(Packet #3)
	> CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
	(Judgment #3)
V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

From part A to part C, TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the transforms as follows:

	CREATE_CHILD_SA exchanges Algorithms		
	Encryption	Integrity	ESN
Part A	ENCR_3DES ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN
Part B	ENCR_3DES	AUTH_HMAC_SHA1_96 AUTH_AES_XCBC_96	No ESN

Part C ENCR_3DES AUTH_HMAC_SHA1_96 No ESN ESN

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #15		
UDP Header	Same as the	Common Packet #15	
IKEv2 Header	Same as the	Common Packet #15	
E Payload	Same as the	e Common Packet #15	
IDi Payload	Same as the Common Packet #15		
AUTH Payload	Same as the Common Packet #15		
N Payload	Same as the Common Packet #15		
SA Payload	Other fields are same as the	Common Packet #15	
	SA Proposals	See below	
TSi Payload	Same as the Common Packet #15		
TSr Payload	Same as the Common Packet #15		

Proposal #1	SA Proposal	Next Payload		0 (last)							
		Reserved		0							
		Proposal Length		40							
		Proposal #		1							
		Proposal ID		3 (ESP)							
		SPI Size		4							
		# of Transforms	3	4							
		SPI		Any							
		SA Transform	Next Payload	3 (more)							
			Reserved	0							
			Transform Length	8							
			Transform Type	According to above configuration							
			Reserved	0							
			Transform ID	According to above configuration							
		SA Transform	Next Payload	3 (more)							
			Reserved	0							
			Transform Length	8							
			Transform Type	1 (ENCR)							
			Reserved	0							
			Transform ID	3 (3DES)							
		SA Transform	Next Payload	3 (more)							
			Reserved	0							
			Transform Length	8							
			Transform Type	3 (INTEG)							
										Reserved	0
			Transform ID	2 (HMAC_SHA1_96)							
		SA Transform	Next Payload	0 (last)							
			Reserved	0							
			Transform Length	8							
			Transform Type	5 (ESN)							
			Reserved	0							
			Transform ID	0 (No ESN)							

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.

6. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH HMAC SHA1 96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES",

"PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.5.4: Receiving Multiple Proposal

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transforms to rekey CHILD_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the two proposals as follows:

	CREATE_CHILD_SA exchanges Algorithms					
	Proposal Protocol Encryption Integrity ESN					
Part A	Proposal #1	ESP	ENCR_AES_CBC	AUTH_HMAC_SHA1_96	No ESN	
rart A	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN	
Part B	Proposal #1	ESP	ENCR 3DES	AUTH AES XCBC 96	No ESN	

	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN
Part C	Proposal #1	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	ESN
Part C	Proposal #2	ESP	ENCR_3DES	AUTH_HMAC_SHA1_96	No ESN

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #15
UDP Header	Same as the Common Packet #15
IKEv2 Header	Same as the Common Packet #15
E Payload	Same as the Common Packet #15
IDi Payload	Same as the Common Packet #15
AUTH Payload	Same as the Common Packet #15
N Payload	Same as the Common Packet #15
SA Payload	Other fields are same as the Common Packet #15
	SA Proposals See below
TSi Payload	Same as the Common Packet #15
TSr Payload	Same as the Common Packet #15

Proposal #1	SA Proposal	Next Payload		2 (more)
		Reserved		0
		Proposal Length	n	40
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	S	4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length	า	40
		Proposal #		2
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms		4
		SPI		Any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8

١				
	P			7
Į	ĽV	U		
	F	ORI	JM	

	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	5 (ESN)
	Reserved	0
	Transform ID	0 (No ESN)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Integrity Algorithms (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Extended Sequecnce Numbers (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.5.5: Perfect Forward Secrecy

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA exchange when Perfect Forward Secrecy enables.

References:

• [RFC 4306] - Sections 2.12

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	FORUM				
TH1	NUT	TN1	TH2		
(Host)	(SGW)	(SGW)	(Host)		
' '	` <i>i '</i>	1			
l i	<	i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)		
1 i	į	į	(Packet #1)		
l i	j	>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)		
l i	į	į	(Judgment #1)		
I i	į	į			
l i	<		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})		
1 i	į	į	(Packet #2)		
1 i	į	>	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})		
1 i	į	į	(Judgment #2)		
l i	İ	İ			
<	· +======	======+	IPsec {Echo Request}		
i	I	- 1	(Packet #3) (Judgment #3)		
		======+	> IPsec {Echo Reply}		
	1	1	(Packet #4) (Judgment #4)		
	1				
	<		CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, KEi,		
	1	1	TSi, TSr})		
			(Packet #5)		
		>	CREATE_CHILD_SA response (HDR, SK {SA, Nr, KEr,		
	I		TSi, TSr})X		
	I		(Judgment #5)		
	I				
	<		INFORMATIONAL request (HDR, SK {D})		
	I	I	(Packet #6)		
			INFORMATIONAL response (HDR, SK {D})		
	I		(Judgment #6)		
!	I				
<	· +======	======+	IPsec {Echo Request} (new CHILD_SA)		
!	l		(Packet #7) (Judgment #7)		
	· +======	======+	> 11 000 (2010 10p1y) (11011 011125_011)		
!	ļ.	ļ.	(Packet #8) (Judgment #8)		
1 1	l l	Į.	<u> </u>		
V	V	V	V		
N DEVEN 3:					
N: REKEY_SA	N: REKEY_SA				

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below
Packet #7	See Common Packet #21
	(encrypted by the new CHILD_SA)
Packet #8	See Common Packet #25

Packet #5: CREATE_CHILD_SA response

IPv6 Header	Same as the Common	Packet #15
UDP Header	Same as the Common	Packet #15
IKEv2 Header	Same as the Common	Packet #15
E Payload	Same as the Common	Packet #15
N Payload	Same as the Common	Packet #15
N Payload	Same as the Common	Packet #15
SA Payload	Same as the Common	Packet #15
Ni Payload	Next Payload	34 (KE)
KEi Payload	Next Payload	44 (TSi)
	Critical	0

	Reserved	0
	Payload Length	136
	DH Group #	2
	Reserved	0
	Key Exchange Data	any
TSi Payload	Same as the Common	Packet #15
TSr Payload	Same as the Common	Packet #15

Packet #6: INFORMATIONAL request

ID C II 1		C 4 C D 1 / //17	
IPv6 Header	Same as the Common Packet #17		
UDP Header	Same as the Common Packet #17		
IKEv2 Header	Same as the Common Packet #17		
E Payload	Other fields are same as the Common Packet #17		
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved	0	
	Payload Length	12	
	Procotol ID	3 (ESP)	
	SPI Size	4	
	# of SPIs	1	
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange	

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the first negotiated algorithms to the NUT.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with a Delete payload to the NUT.
- 12. Observe the messages transmitted on Link A.
- 13. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the second negotiated algorithms to the NUT.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT transmits an INFORMATIONAL response with a Delete payload. The Delete payload includes 3 (ESP) as Protocol ID, 4 as SPI Size and the NUT's inbound SPI value to be deleted as SPI value.

Step 14: Judgment #7

The NUT forwards an Echo Request.

Step 16: Judgment #8

The NUT forwards an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.5.6: Use of the old CHILD_SA

Purpose:

To verify an IKEv2 device properly handles new CHILD_SA and old CHILD_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 	 >	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 < 	 >	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 		IPsec {Echo Request} (Packet #3) (Judgment #3) > IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 < 	 >	CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr}) (Packet #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr}) (Judgment #5)
	 	 	IPsec {Echo Request} (old CHILD_SA) (Packet #6) (Judgment #6) > IPsec {Echo Reply} (old CHILD_SA or new CHILD_SA) (Packet #7) (Judgment #7)
N: REKEY_SA	v	v	•

Packet #1	See Common Packet #1
Packet #2	See Common Packet #3
Packet #3	See Common Packet #21

7 0110111		
Packet #4	See Common Packet #25	
Packet #5	See Common Packet #15	
Packet #6	See Common Packet #21	
	(encrypted by the old CHILD_SA)	
Packet #7	See Common Packet #25	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the first negotiated algorithms to the NUT.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request using the first negotiated algorithms again.
- 12. Observe the messages transmitted on Link B.
- 13. TH1 transmits an Echo Reply to TH2.
- 14. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT forwards an Echo Request.

Step 14: Judgment #7

The NUT forwards an Echo Reply with IPsec ESP. The NUT can use both the first CHILD_SA and the new CHILD_SA.

Possible Problems:

none

Group 2.6. Rekeying IKE_SAs Using a CREATE_CHILD_SA exchange

Test IKEv2.SGW.R.1.2.6.1: Sending CREATE_CHILD_SA response

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8 and 2.18

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
I		l	
1	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
ļ	ļ	ļ.	(Packet #1)
ļ		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
!	ļ	ļ.	(Judgment #1)
l I		 	 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
			TKL_NOTH request (HDK, SK {IDT, XOTH, SAT2, TST, TST}) (Packet #2)
i		>	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
i	i	i	(Judgment #2)
i	į	į	
<		=====+	IPsec {Echo Request}
I	I	I	(Packet #3) (Judgment #3)
		=====+	> IPsec {Echo Reply}
ļ.	ļ	ļ.	(Packet #4) (Judgment #4)
ļ	1	ļ	L CDEATE CHILD CA request (LDD CV (CA NE))
I I	<		CREATE_CHILD_SA request (HDR, SK {SA, Ni})
ļ	 		(Packet #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr})
i			(Judgment #5)
i	i	i	(
V	V	Ÿ	Ÿ

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #11

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a SA payload. The proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the proposal in the SA payload Response includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE SA Responder's SPI value in the SPI field.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.2: Receipt of cryptographically valid message on the old SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 <		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
		> 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	-		IPsec {Echo Request}
l i	1	1	(Packet #3) (Judgment #3)
j	- +=======	======+	> IPsec {Echo Reply}
į	ļ	ļ	(Packet #4) (Judgment #4)
	 < 		 CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #5)
		>	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #5)
		 	INFORMATION Request (HDR, SK {})
		> >	(Packet #6) INFORMATIONAL response (HDR, SK {}) (Judgment #6)
	i i		(Gaagiicitt #0)
V	Ÿ	Ÿ	Ÿ

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Packet #5	See Common Packet #11
Packet #6	See Common Packet #17
	(encrypted by the old IKE_SA)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with no payloads protected by the old IKE SA.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA Responder's SPI value in the SPI field.

Step 12: Judgment #6

The NUT responds with an INFORMATIONAL response with no payloads protected by the old IKE_SA.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.3: Receipt of cryptographically valid message on the new SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 <	 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 <		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
		> 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	-		IPsec {Echo Request}
l i	1	1	(Packet #3) (Judgment #3)
j	- +=======	======+	> IPsec {Echo Reply}
į	ļ	ļ	(Packet #4) (Judgment #4)
	 < 		 CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #5)
		>	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #5)
		 	INFORMATION Request (HDR, SK {})
		> >	(Packet #6) INFORMATIONAL response (HDR, SK {}) (Judgment #6)
	i i		(Gaagiicitt #0)
V	Ÿ	Ÿ	Ÿ

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

Packet #5	See Common Packet #11
Packet #6	See Common Packet #17
	(encrypted by the new IKE_SA)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA Responder's SPI value in the SPI field.

Step 12: Judgment #6

The NUT responds with an INFORMATIONAL response with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.

Possible Problems:

Test IKEv2.SGW.R.1.2.6.4: Close the replaced IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.8 and 5.11

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
		 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
		 > 	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	İ	 	IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
		 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #5) CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #5)
	 < 	 > 	INFORMATION Request (HDR, SK {D}) (Packet #6) INFORMATIONAL response (HDR, SK {}) (Judgment #6)
	İ	 	IPsec {Echo Request}

Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #11
Packet #6	See below
Packet #7	See Common Packet #21
Packet #8	See Common Packet #25

• Packet #6: INFORMATIONAL request

IPv6 Header	Same as the Commo	n Packet #17
UDP Header	Same as the Commo	n Packet #17
IKEv2 Header	Same as the Commo	n Packet #17
E Payload	Other fields are same as the Commo	n Packet #17
	Next Payload	42 (Delete)
Delete Payload	Next Payload	0 (last)
	Critical	0
	Reserved	0
	Payload Length	16
	Procotol ID	1 (IKE_SA)
	SPI Size	0
	# of SPIs	0
	Security Parameter Index(es) (SPI)	empty

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request to rekey IKE_SA. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA Initiator's SPI value.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request with a Delete payload which has 1 (IKE_SA) in the Protocol ID field, zero in the SPI Size field and zero in the # of SPIs field.
- 12. Observe the messages transmitted on Link A.
- 13. TH2 transmits an Echo Request to TH1. TN1 forwards an Echo Request with IPsec ESP with corresponding algorithms inherited from the replaced IKE_SA.
- 14. Observe the messages transmitted on Link B.
- 15. TH1 transmits an Echo Reply to TH2.
- 16. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA Responder's SPI value in the SPI field.

Step 12: Judgment #6

The NUT responds with an INFORMATIONAL response with no payloads.

Step 14: Judgment #3

The NUT forwards an Echo Request.

Step 16: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms inherited from the replaced IKE_SA.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.5: Receiving Multiple Transform

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple transform to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
	Ĺ
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH SAr2, TSi, TSr})
	(Judgment #2)
<	
	(Packet #3)
	> CREATE_CHILD_SA response (HDR, SK {SA, Nr })
	(Judgment #3)
V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

From part A to part D, TN1 transmits an IKE_SA_INIT request including a SA payload which contains the transforms as follows:

	IKE_SA_INIT exchanges Algorithms						
	Encryption	ncryption PRF Integrity D-H Group					
Part A	ENCR_AES_CBC ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2			
Part B	ENCR_3DES	PRF_AES128_CBC PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2			
Part C	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96 AUTH_HMAC_SHA1_96	Group 2			

				Group 14 or
Part D	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 24,
				Group 2

• Packet #3 CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #11			
UDP Header	Same as the Common Packet #11			
IKEv2 Header	Same as the Common Packet #11			
SA Payload	Other fields are same as the common packet #11			
	SA Proposals See SA Table below			
Ni, Nr Payload	Same as the Common Packet #11			

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengtl	n	44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	3	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	According to above configuration
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	2 (HMAC_SHA1)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	2 (HMAC_SHA1_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A

Part B: Multiple Pseudo Random Function (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: MultipleIntegrity Algorithm (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Multiple D-H Group (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.6: Receiving Multiple Proposal

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with multiple proposal to rekey IKE_SA.

References:

• [RFC 4306] - Sections 2.7, 2.8 and 3.3

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
I	
< 	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
 	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
 	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #3)
 	> CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #3)

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

TN1 transmits a CREATE_CHILD_SA request including a SA payload which contains the two proposals as follows:

	IKE_SA_INIT exchanges Algorithms						
	Proposals Protocol Encryption PRF Integrity D-H Gr						
Part A	Proposal #1	IKE	ENCR_AES_CBC	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
rant A	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2	
Part B	Proposal #1	IKE	ENCR_3DES	PRF_AES128_CBC	AUTH_HMAC_SHA1_96	Group 2	
	Proposal #2	IKE	ENCR 3DES	PRF HMAC SHA1	AUTH HMAC SHA1 96	Group 2	

Part C	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_AES_XCBC_96	Group 2
Fart O	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2
Part D	Proposal #1	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 14 or Group 24
	Proposal #2	IKE	ENCR_3DES	PRF_HMAC_SHA1	AUTH_HMAC_SHA1_96	Group 2

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #11			
UDP Header	Same as the Common Packet #11			
IKEv2 Header	Same as the Common Packet #11			
SA Payload	Other fields are same as the common packet #11			
	SA Proposals See SA Table below			
Ni, Nr Payload	Same as the Common Packet #11			

Proposal #1	SA Proposal	Next Payload		2 (more)
	•	Reserved		0
		Proposal Lengtl	n	44
		Proposal #		1
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	3	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	According to above configuration
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	4 (D-H)
			Reserved	0
			Transform ID	According to above configuration
Proposal #2	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Lengtl	n	44
		Proposal #		2
		Protocol ID		1 (IKE)
		SPI Size		0
		# of Transforms	3	5
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	3 (3DES)
		SA Transform	Next Payload	3 (more)
			Reserved	0

		7		ija V	
đ	K	1)	/	7
1	¥	OR	UN	1	

	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	2 (HMAC_SHA1)
SA Transform	Next Payload	3 (more)
	Reserved	0
	Transform Length	8
	Transform Type	3 (INTEG)
	Reserved	0
	Transform ID	2 (HMAC_SHA1_96)
SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	4 (D-H)
	Reserved	0
	Transform ID	2 (1024 MODP Group)

Part A: Multiple Encryption Algorithms (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Multiple Pseudo Random Function (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY SA and rekeyed CHILD SA's SPI value in the SPI field to the NUT.
- 12. Observe the messages transmitted on Link A.

Part C: Multiple Integrity Algorithms (BASIC)

- 13. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 14. Observe the messages transmitted on Link A.
- 15. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 16. Observe the messages transmitted on Link A.
- 17. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.
- 18. Observe the messages transmitted on Link A.

Part D: Multiple D-H Group (BASIC)

- 19. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 20. Observe the messages transmitted on Link A.
- 21. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT.

24. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part B

Step 8: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 10: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 12: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part C

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 18: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Part D

Step 20: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 22: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 24: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

none

Test IKEv2.SGW.R.1.2.6.7: Changing RPFs when rekeying the IKE_SA

Purpose:

To verify an IKEv2 device properly handles CREATE_CHILD_SA to rekey IKE_SA.

References:

- [RFC 4306] Sections 2.8
- [RFC 4718] Sections 5.5

Test Setup:

Network Topology

Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration. Configure the devices according to the Common Configuration except for *Italic* parameters.

		IKE_SA Rekeying Algorithms				
l		Encryption PRF Integrity D-H Group				
	Part A	ENCR_3DES	PRF_AES128_XCBC	AUTH_HMAC_SHA1_96	Group 14	

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT TN	1
(SGW) (SG	W)
i i	IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	<pre>IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)</pre>
<	<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)</pre>
>	<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)</pre>
<	CREATE_CHILD_SA request (HDR, SK {SA, Ni}) (Packet #3)
	CREATE_CHILD_SA response (HDR, SK {SA, Nr}) (Judgment #3)
<	<pre>INFORMATION Request (HDR, SK {}) (Packet #4)</pre>
	<pre>INFORMATIONAL response (HDR, SK {}) (Judgment #4)</pre>
V V	

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #5	

Packet #3	See Common Packet #11	
Packet #4	See Common Packet #17	
	(encrypted by the new IKE_SA)	

Packet #3: CREATE_CHILD_SA request

Packet #3 is same as Common Packet #11 except SA Transform proposed in each test.

Part A:

SA Transform of Tranform Type D-H is replaced by the following SA Transfrom.

SA Transform	Next Payload	0 (last)
	Reserved	0
	Transform Length	8
	Transform Type	2 (PRF)
	Reserved	0
	Transform ID	4 (PRF_AES128_XCBC)

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE SA Initiator's SPI value.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an INFORMATIONAL request with no payloads protected by the new IKE_SA and the Message ID field in the IKE header is zero.
- 8. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 14" as proposed algorithms. And the proposal in the SA payload includes 1 (IKE) in the Protocol ID field, 8 in the SPI size field and rekeyed IKE_SA Responder's SPI value in the SPI field.

Step 8: Judgment #4

The NUT responds with an INFORMATIONAL response with no payloads protected by the new IKE SA and the Message ID field in the IKE header is zero.

Possible Problems:

• none

Test IKEv2.SGW.R.1.2.6.8: D-H transform NONE when rekeying the IKE_SA

This test case was deleted at revision 1.1.0.

Test IKEv2.SGW.R.1.2.6.9: Rekeying Failure

Purpose:

To verify an IKEv2 device properly handles a CREATE_CHILD_SA request with an unacceptable SA payload.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(SGW)	
	1	
<		KE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	>	KE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
	1	
<		KE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	' '	Packet #2)
		KE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
!	(Judgment #2)
!		
<		CREATE_CHILD_SA request (HDR, SK {SA, Ni, KE})
!		Packet #3)
		CREATE_CHILD_SA response (HDR, SK {N(NO_PROPOSAL_CHOSEN)})
!	(Judgment #3)
]]	Ţ	
V	V	

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See below

• Packet #3: CREATE_CHILD_SA request

IPv6 Header	Same as the Common Packet #15		
UDP Header	Same as the Common Packet #15		
IKEv2 Header	Same as the	e Common Packet #15	
E Payload	Same as the	e Common Packet #15	
N Payload	Same as the Common Packet #15		
N Payload	Same as the Common Packet #15		
SA Payload	Other fields are same as the Common Packet #15		
	SA Brancools	Saa balaw	

Ni, Nr Payload	Same as the Common Packet #15
TSi Payload	Same as the Common Packet #15
TSr Payload	Same as the Common Packet #15

Proposal #1	SA Proposal	Next Payload		0 (last)
		Reserved		0
		Proposal Length		36
		Proposal #		1
		Proposal ID		3 (ESP)
		SPI Size		4
		# of Transforms	3	3
		SPI		any
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	1 (ENCR)
			Reserved	0
			Transform ID	12 (AES_CBC)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	2 (PRF)
			Reserved	0
			Transform ID	4 (AES128_XCBC)
		SA Transform	Next Payload	3 (more)
			Reserved	0
			Transform Length	8
			Transform Type	3 (INTEG)
			Reserved	0
			Transform ID	5 (AES_XCBC_96)
		SA Transform	Next Payload	0 (last)
			Reserved	0
			Transform Length	8
			Transform Type	5 (ESN)
			Reserved	0
			Transform ID	1 (ESN)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 trasmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request to rekey the established IKE_SA to the NUT. The CREATE_CHILD_SA request includes a SA payload with a proposal unaccepted by the NUT.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including a Notify payload of type NO_PROPOSAL_CHOSEN.

Possible Problems:

• None.

Group 2.7. Creating New CHILD_SA with the CREATE_CHILD_SA Exchange

Test IKEv2.SGW.R.1.2.7.1: Receipt of cryptographically protected message on the new SA

Purpose:

To verify an IKEv2 device properly recognizes the lifetime of CHILD_SAs.

References:

• [RFC 4306] - Sections 2.8

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

			FORUM	
TH1	NUT	TN1	TH2	TH3
(Host)	(SGW)	(SGW)	(Host)	(Host)
	 < 			 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
		>		IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
			i I	 IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
		> 		(Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
		 		(Judgment #2)
	 	=====+ =====+	 	IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
X	 	 =====+ 	i 	
	 			IPsec {Echo Request} (Packet #6) (Judgment #6)
	<	 		CREATE_CHILD_SA request (HDR, SK{SA, Ni, TSi, TSr}) (Packet #7)
		> 	į Į	CREATE_CHILD_SA response (HDR, SK{SA, Nr, TSi, TSr}) (Judgment #7)
	 +========	 =====+		 IPsec {Echo Request}
	 	 =====+ 	> 	(Packet #8) (Judgment #8) IPsec {Echo Reply} (Packet #9) (Judgment #9)
	 	 =====+ 	 	
	 	 	 	> IPsec {Echo Reply} (Packet #11) (Judgment #11)
V	V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below
Packet #6	See below
Packet #7	See below
Packet #8	See Common Packet #21
Packet #9	See Common Packet #25
Packet #10	See below
Packet #11	See below

• Packet #2: IKE_AUTH request

IPv6 Header	Same as the	Common Packet #5
UDP Header	Same as the	Common Packet #5
IKEv2 Header	Same as the	Common Packet #5
E Payload	Same as the	Common Packet #5
IDi Payload	Same as the	Common Packet #5
AUTH Payload	Same as the	Common Packet #5
N Payload	Same as the	Common Packet #5
SA Payload	Same as the	Common Packet #5
TSi Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #5
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH2's Global Address on Link B
		Ending Address	TH2's Global Address on Link B

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link Y
		Ending Address	TH1's Global Address on Link Y

• Packet #5: Echo Request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH3's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

• Packet #6: Echo Request

IPv6 Header	Source Address	TH1's Global Address
	Distination Address	TH3's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x0000000000000000

• Packet #7: CREATE_CHILD_SA request

IPv6 Header	Same as the	Common Packet #4
UDP Header	Same as the	Common Packet #4
IKEv2 Header	Same as the	Common Packet #4
E Payload	Same as the	Common Packet #4
IDi Payload	Same as the	Common Packet #4
AUTH Payload	Same as the	Common Packet #4
N Payload	Same as the	Common Packet #4
SA Payload	Same as the	Common Packet #4
TSi Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below
TSr Payload	Other fields are same as the	Common Packet #4
	Traffic Selectors	See below

TSi Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH3's Global Address on Link B
		Ending Address	TH3's Global Address on Link B

TSr Payload	Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
		IP Protocol ID	0 (any)
		Selector Length	40
		Start Port	0
		End Port	65535
		Starting Address	TH1's Global Address on Link Y
		Ending Address	TH1's Global Address on Link Y

• Packet #10: Echo Request

IPv6 Header	Source Address	TN1's Global Address on Link X
	Destination Address	NUT's Global Address on Link A
ESP	Security Parameter Index	CHILD_SA's SPI value used by this message
	Sequence Number	The value incremented the previous encrypted packet's Sequence Number by one.
	Payload Data	Subsequent data encrypted by underlying encryption algorithm
	Padding	Any value which to be a multiple of the encryption block size
	Pad Length	The length of the Padding field
	Next Header	41 (IPv6)
	Integrity Check Value	The checksum must be valid by calculation according to the manner described in RFC.
IPv6 Header	Source Address	TH3's Global Address
	Destination Address	TH1's Global Address
ICMPv6 Header	Туре	128
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x000000000000000000000000000000000000

• Packet #11: Echo Reply

IPv6 Header	Source Address	TH1's Global Address
	Distination Address	TH3's Global Address
ICMPv6 Header	Туре	129
	Code	0
	Identifier	any
	Sequence Number	any
	Payload Data	0x0000000000000000

Part A: (ADVANCED)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link B.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link B.
- 5. TH2 transmits an Echo Request packet to TH1.
- 6. Observe the messages transmitted on Link A.
- 7. TH1 transmits an Echo Reply packet to TH2.
- 8. Observe the messages transmitted on Link B.
- 9. TH3 transmits an Echo Request packet to TH1.
- 10. Observe the messages transmitted on Link A.
- 11. TH1 transmits an Echo Request packet to TH3.
- 12. Observe the messages transmitted on Link B.
- 13. TN1 starts to negotiate new CHILD_SA with the NUT by sending CREATE_CHILD_SA request.
- 14. Observe the messages transmitted on Link B.
- 15. TH2 transmits an Echo Request packet to TH1.
- 16. Observe the messages transmitted on Link A.
- 17. TH1 transmits an Echo Reply packet to TH2.
- 18. Observe the messages transmitted on Link B.
- 19. TH3 transmits an Echo Request packet to TH1.
- 20. Observe the messages transmitted on Link A.
- 21. TH1 transmits an Echo Reply packet to TH3.
- 22. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 10: Judgment #5

The NUT never forwards an Echo Request.

Step 12: Judgment #6

The NUT never forwards an Echo Reequest with IPsec ESP using the first negotiated algorithms.

Step 14: Judgment #7

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 16: Judgment #8

The NUT forwards an Echo Request.

Step 18: Judgment #9

The NUT forwards an Echo Reply with IPsec ESP using the first negotiated algorithms.

Step 20: Judgment #10

The NUT forwards an Echo Request.

Step 22: Judgment #11

The NUT forwards an Echo Reply with IPsec ESP using the second negotiated algorithms.

Possible Problems:

None

Group 2.8. Error Handling

Test IKEv2.SGW.R.1.2.8.1: AUTHENTICATION_FAILED

This test case was deleted at revision 1.1.0.

Group 2.9. Non zero RESERVED fields

Test IKEv2.SGW.R.1.2.9.1: Non zero RESERVED fields in CREATE_CHILD_SA request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

```
NUT
                  TN1
  (SGW)
                 (SGW)
    |<----| IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
                  | (Packet #1)
         ---->| IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
                  | (Judgment #1)
        ----- | IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
                  | (Packet #2)
          ---->| IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
                  | (Judgment #2)
       -----| CREATE_CHILD_SA request (HDR, SK {N, SA, Ni, TSi, TSr})
                  | (Packet #3)
             ---->| CREATE_CHILD_SA response (HDR, SK {SA, Nr, TSi, TSr})
                  | (Judgment #3)
N: REKEY_SA
N+: USE_TRANSPORT_MODE
```

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #5	
Packet #5	See Common Packet #15	
	All RESERVED fields are set to one.	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits a CREATE_CHILD_SA request including a Notify Payload of type REKEY_SA and rekeyed CHILD_SA's SPI value in the SPI field to the NUT. All RESERVED fields are set to one.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits a CREATE_CHILD_SA response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Group 3. The INFORMATIONAL Exchange

Group 3.1. Header and Payload Formats

Test IKEv2.SGW.R.1.3.1.1: Sending INFORMATIONAL response

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.1.2 and 1.4

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	(Judgment #2)
<	INFORMATION request (HDR, SK { })
	(Packet #3)
	> INFORMATIONAL response (HDR, SK { })
	(Judgment #3)
V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #17

Part A: IKE Header Format (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT_SA response from the NUT, TN1 transmits an

- IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 6. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 7. TN1 starts to negotiate with NUT by sending IKE SA INIT request.
- 8. Observe the messages transmitted on Link A.
- 9. After reception of IKE_SA_INIT_SA response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 10. Observe the messages transmitted on Link A.
- 11. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads to the NUT.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 7: Judgment #3

The NUT transmits an INFORMATIONAL response including properly formatted IKE Header containing following values:

Figure 171 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE_SA
 Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).

- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to INFORMATIONAL (37).
- A Flags field set to (00000100)2 = (4)10.
- A Message ID field set to the same value as corresponding IKEv2 request message's Message ID.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 9: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 11: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 14: Judgment #3

The NUT transmits an INFORMATIONAL response including properly formatted Encrypted Payload containing following values:

Figure 172 Encrypted payload

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR 3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire

message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Possible Problems:

• None.

Group 3.2. Use of Retransmission Timers

Test IKEv2.SGW.R.1.3.2.1: Receipt of retransmitted INFORMATIONAL request

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.1.2, 1.4 and 2.1

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	ΓN1
(SGW) (SGW)
	LIVE CALINIT PARTICLE (UDD. CA:4 IVE: N:)
<	- IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	(Idoket #1) IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	 - IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	 - INFORMATIONAL request (HDR, SK { }) (Packet #3)
	> INFORMATIONAL response (HDR, SK { }) (Judgment #3)
	* wait until retrans timer expires
	> INFORMATIONAL response (HDR, SK { })
	(Judgment #4)
	 - INFORMATIONAL request (HDR, SK { })
	(Packet #4)
	> INFORMATIONAL response (HDR, SK { })
	(Judgment #5)
l V	V
·	•

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #17

Packet #4	See Common Packet #17
	(same Message ID as packet #3)

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an INFORMATIONAL request with no payloads.
- 6. Observe the messages transmitted on Link A.
- 7. Observe the messages transmitted on Link A.
- 8. TN1 transmits an INFORMATIONAL request with no payloads. The Message ID is the same as Step 5.
- 9. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Step 7: Judgment #4

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Step 9: Judgment #5

The NUT transmits an INFOMATIONAL response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

Group 3.3. Non zero RESERVED fields

Test IKEv2.SGW.R.1.3.3.1: Non RESERVED fields in INFORMATIONAL request

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration. In addition, set IKE_SA Lifetime to 300 seconds and set CHILD_SA Lifetime to 30 seconds.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(SGW)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
!	(Judgment #2)
!	
<	INFORMATIONAL request (HDR, SK {})
	(Packet #3)
!	> INFORMATIONAL response (HDR, SK {})
!	[(Judgment #3)
V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #17
	All RESERVED fields are set to one.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_AUTH response from the NUT, TN1 transmits an IKE_AUTH

request to the NUT.

- 4. Observe the messages transmitted on Link A.
- 5. After reception of IKE_AUTH response from the NUT, TN1 transmits an INFORMATIONAL request with no payloads. All RESERVED fields in the message are set to one.
- 6. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as accepted algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as accepted algorithms.

Step 6: Judgment #3

The NUT transmits an INFOMATIONAL Response followed by an Encrypted payload with no payloads contained in it.

Possible Problems:

Group 4. RFC 5996

Group 4.1. Rekeying IKE SAs Using a CREATE_HLD_SA Exchange

[SGW.R.P29.L2503.ADD] Test IKEv2.SGW.R.1.4.1.1.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 5996] - Section 2.18

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
		1	
	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		I	(Packet #1)
		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
!	ļ	ļ	(Judgment #1)
!	ļ	į.	
!	<		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
!	ļ	ļ	(Packet #2)
1 !		>	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
	l I	!	(Judgment #2)
	 	 =======+	IPsec {Echo Request}
	 		(Packet #3) (Judgment #3)
	 +=======	, =======+	> IPsec {Echo Reply}
l i	i	i	(Packet #4) (Judgment #4)
l i	i	i	
l i	<	·i	CREATE_CHILD_SA request (HDR, SK {SA, Ni})
1 i	į	j	(Packet #5)
		>	CREATE_CHILD_SA response (HDR,
		1	SK {N(NO_PROPOSAL_CHOSEN)})
		1	(Judgment #5)
		I	
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5

Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See Common Packet #11

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. TN1 transmits a CREATE_CHILD_SA request including a SA payload. A proposal in the SA payload contains 1 (IKE) in the Protocol ID field, 8 in the SPI size field and the rekeyed IKE_SA's initiator's SPI value. The proposal has the value "NONE" for the Diffie-Hellman transform.
- 10. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #4

The NUT transmits a CREATE_CHILD_SA response with Notify payload of type NO PROPOSAL CHOSEN.

Possible Problems:

[SGW.R.P86.L4030.ADD.1] Test IKEv2.EN.R.1.4.1.2.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can handle a proposal that contains a Transform Type it does not understand

References:

• [RFC 5996] - Section 3.3.6

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #1	IKE_SA_INIT request has 2 SA Proposals.

Part A: (BASIC)

- TN1 starts to negotiate with NUT by sending IKE_SA_INIT request. The request has 2 proposals. One proposal has 5 Transforms which are "a Transform Type (240)", "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", and "D-H Group 2". Another proposal has 4 Transforms which are "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", and "D-H Group 2".
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

[SGW.R.P86.L4030.ADD.2] Test IKEv2.EN.R.1.4.1.3.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can handle a proposal that is missing a mandatory Transform Type

References:

• [RFC 5996] - Section 3.3.6

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #1	IKE_SA_INIT request has 2 SA Proposals.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request. The request has 2 proposals. One proposal has 3 Transforms which "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", and "D-H Group 2". Another proposal has 4 Transforms which are "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", and "D-H Group 2".
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

[SGW.R.P86.L4034.ADD.1] Test IKEv2.EN.R.1.4.1.4.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can handle a transform that it does not understand

References:

• [RFC 5996] - Section 3.3.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packet #1
Packet #1	IKE_SA_INIT request has 5 SA Transforms.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request. The request has 5 Transforms which are "1 (ENCR) as Transform Type and 1023 as Transform ID", "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2".
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

[SGW.R.P86.L4034.ADD.2] Test IKEv2.EN.R.1.4.1.5.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can handle a Transform Attribute it does not understand

References:

• [RFC 5996] - Section 3.3.5

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

	See Common Packt #1
Packet #1	IKE_SA_INIT request has 5 SA Transforms.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request. The request has 5 Transforms which are "ENCR_3DES with Transform Attribute of type KeyLength and value 192", "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96", "D-H Group 2"
- 2. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Possible Problems:

[SGW.R.P57.L2663.ADD] Test IKEv2.EN.R.1.4.1.6.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can notify AUTHENTICATION_FAILED

References:

• [RFC 5996] - Section 2.21.2

Test Setup:

Network Topology
 Connect the devices according to the Common Topology.

Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence

IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1
	See Common Packet #5
Packet #2	Authentication Data is 0x0123456789abcdef0123456789abcdef01234567.

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT. The response includes invalid Authentication Data 0x0123456789abcdef0123456789abcdef01234567.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including Notify payload of type AUTHENTICATION_FAILED.

Possible Problems:

• None

[SGW.R.P69.L3234.ADD] Test IKEv2.EN.R.1.4.1.7.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can process CHILD_CHILD_SA request to close a Child SA that it is currently rekeying.

References:

• [RFC 5996] - Section 2.25.1

Test Setup:

- Network Topology
- Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT TN1	TH2
(Host)	(SGW) (SGW)	(Host)
	 < 	 IKE_SA_INIT request (HDR, SAi1, KEi, Ni) (Packet #1)
	 	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1)
	<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr}) (Packet #2)
	>	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
	·	IPsec {Echo Request} (Packet #3) (Judgment #3) IPsec {Echo Reply} (Packet #4) (Judgment #4)
	 	 CREATE_CHILD_SA request (HDR, SK {N(REKEY_SA), SA, Ni, TSi, TSr}) (Judgment #5)
		INFORMATIONAL request (HDR, SK {D})
	 > 	(Packet #5) INFORMATIONAL response (HDR, SK {D}) (Judgment #6)

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See helow

Packet #5: INFORMATIONAL request

IPv6 Header	Same as the Common Packet #17		
UDP Header		Same as the Common Packet #17	
IKEv2 Header		Same as the Common Packet #17	
E Payload	Other fields ar	e same as the Common Packet #17	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved 0		
	Payload Length	12	
	Procotol ID	3 (ESP)	
	SPI Size	4	
	# of SPIs	1	
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. Repeat Steps 5 and 6 until lifetime of SA is expired for 30 seconds.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request. The request includes a Delete payload with 3 (ESP) as Protocol ID, 4 as SPI Size and SPI value to delete Child SA.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey a Child SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence

Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 12: Judgment #6

The NUT transmits an INFORMATIONAL response. The response includes a Delete payload with 3 (ESP) as Protcol ID, 4 as SPI Size and SPI value to delete Child SA.

Possible Problems:

[SGW.R.P69.L3252.ADD] Test IKEv2.EN.R.1.4.1.8.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can process INFORMATIONAL request to close IKE SA that it is currently rekeying.

References:

• [RFC 5996] - Section 2.25.1

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	 < 		
		 	IKE_SA_INIT response (HDR, SAr1, KEr, Nr) (Judgment #1) IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
			(Packet #2)
	 	·> 	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr}) (Judgment #2)
<	। +=======	 ======+	IPsec {Echo Request}
	I		(Packet #3) (Judgment #3)
	 	:====== 	> IPsec {Echo Reply} (Packet #4) (Judgment #4)
		>	CREATE_CHILD_SA request (HDR, SK {SA, Ni, KEi}) (Judgment #5)
i	<	·i	INFORMATIONAL request (HDR, SK {D}) (Packet #5)
	 	>	(Facket #3) INFORMATIONAL response (HDR, SK {}) (Judgment #6)
	 > V	\	 CREATE_CHILD_SA request (HDR, SK {SA, Ni, KEi}) (Judgment #7) V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21

Packet #4	See Common Packet #25
Packet #5	See Common below

• Packet #5: INFORMATIONAL request

IPv6 Header	Same as the Common Packet #17		
UDP Header	Same as the Commo	n Packet #17	
IKEv2 Header	Same as the Commo	n Packet #17	
E Payload	Other fields are same as the Commo	n Packet #17	
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved 0		
	Payload Length	16	
	Procotol ID	1 (IKE_SA)	
	SPI Size	0	
	# of SPIs	0	
	Security Parameter Index(es) (SPI)	empty	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. Repeat Steps 5 and 6 until lifetime of SA is expired for 30 seconds.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request. The request includes a Delete payload with 1 (IKE) as Protocol ID, zero as SPI Size and no SPI value.
- 12. Observe the messages transmitted on Link A.
- 13. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE AUTH request including "ENCR 3DES",

"AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey IKE SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 12: Judgment #6

The NUT transmits an INFORMATIONAL response with no payloads.

Step 13: Judgment #7

The NUT does not retransmit a CREATE_CHILD_SA request to rekey a Child SA.

Possible Problems:

[SGW.R.P69.L3258.ADD] Test IKEv2.EN.R.1.4.1.9.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can process CREATE_CHILD_SA request to rekey a Child SA when it is currently rekeying the IKE SA.

References:

• [RFC 5996] - Section 2.5.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration
 In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
!	ļ.	ļ	(Packet #1)
!		>	IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
!	ļ	ļ	(Judgment #1)
	1		LIVE AUTH TOTAL (UDD. CV. (ID: AUTH CA:O. TC: TC-1)
	<		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	!		(Packet #2) IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
		>	TKL_AUTH Tesponse (HDK, SK {TDT, AUTH, SKT2, TST, TST}) (Judgment #2)
		l I	(Guaginetit #2)
	 +======	 =======+	IPsec {Echo Request}
Li	İ	ĺ	(Packet #3) (Judgment #3)
i	+======	======+	> IPsec {Echo Reply}
l i	1	1	(Packet #4) (Judgment #4)
l i	j	j	į ·
		>	CREATE_CHILD_SA request (HDR, SK {SA, Ni, KEi})
	1	1	(Judgment #5)
	<		CREATE_CHILD_SA request (HDR,
!	ļ.	ļ	SK {N(REKEY_SA), SA, Ni, TSi, TSr})
!	ļ		(Packet #5)
!		>	CREATE_CHILD_SA response (HDR, SK {N(TEMPORARY_FAILURE)})
	ļ		(Judgment #6)
	I V	l V	l V
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25

	Packet #5	See Common Packet #11
--	-----------	-----------------------

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. Repeat Steps 5 and 6 until lifetime of SA is expired for 30 seconds.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits a CREATE_CHILD_SA request to rekey a Child SA. The request includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT transmits a CREATE_CHILD_SA request to rekey a Child SA. The message includes "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. And the CREATE_CHILD_SA request includes a Notify payload of type REKEY_SA containing rekeyed CHILD_SA's SPI value in the SPI field.

Step 12: Judgment #6

The NUT transmits a CREATE_CHILD_SA response. The response includes a Notify payload of type TEMPORRAY_FAILURE.

Possible Problems:

• None

[SGW.R.P69.L3260.ADD] Test IKEv2.EN.R.1.4.1.10.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can process CREATE_CHILD_SA request to delete a Child SA when it is currently rekeying the IKE SA

References:

• [RFC 5996] - Section 2.5.2

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1	TH2
(Host)	(SGW)	(SGW)	(Host)
	<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
			(Packet #1)
			IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
			(Judgment #1)
		l	
!	<		IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
!	ļ	ļ.	(Packet #2)
!		>	IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
!		ļ	(Judgment #2)
1 !		l	I IDaga (Faha Dagwaat)
<	·	=======+	IPsec {Echo Request}
1 :		 	(Packet #3) (Judgment #3)
	·	=======+ 	> IPsec {Echo Reply} (Packet #4) (Judgment #4)
¦			(Tacket #4) (Suugment #4)
1 :			CREATE_CHILD_SA request (HDR, SK {SA, Ni, KEi})
l i			(Judgment #5)
l ¦	i	i	
li	<		INFORMATIONAL request (HDR, SK {D})
Li	i	i	(Packet #5)
l i	j		INFORMATIONAL response (HDR, SK {D})
Ιi	į	i	(Judgment #6)
li	į	į	
V	V	V	V

Packet #1	See Common Packet #1
Packet #2	See Common Packet #5
Packet #3	See Common Packet #21
Packet #4	See Common Packet #25
Packet #5	See below

Packet #5: INFORMATIONAL request

IPv6 Header		Same as the Common Packet #17	
UDP Header	Same as the Common Packet #17		
IKEv2 Header	Same as the Common Packet #17		
E Payload	Other fields are same as the Common Packet #17		
	Next Payload	42 (Delete)	
Delete Payload	Next Payload	0 (last)	
	Critical	0	
	Reserved	0	
	Payload Length	12	
	Procotol ID	3 (ESP)	
	SPI Size	4	
	# of SPIs	1	
	Security Parameter Index(es) (SPI)	SPI negotiated by Initial Exchange	

Part A: (BASIC)

- 1. TN1 starts to negotiate with NUT by sending IKE_SA_INIT request.
- 2. Observe the messages transmitted on Link A.
- 3. After reception of IKE_SA_INIT response from the NUT, TN1 transmits an IKE_AUTH request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TH2 transmits an Echo Request to TH1.
- 6. Observe the messages transmitted on Link B.
- 7. TH1 transmits an Echo Reply to TH2.
- 8. Observe the messages transmitted on Link A.
- 9. Repeat Steps 5 and 6 until lifetime of SA is expired for 30 seconds.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an INFORMATIONAL request. The request includes a Delete payload with 3 (ESP) as Protcol ID, 4 as SPI Size and SPI value to delete Child SA.
- 12. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

TN1 transmits an INFORMATIONAL request. The request includes a Delete payload with 3 (ESP) as Protcol ID, 4 as SPI Size and SPI value to delete Child SA.

Step 12: Judgment #6
The NUT transmits an INFORMATIONAL response with 3 (ESP) as Protcol ID, 4 as SPI Size and SPI value to delete Child SA.

Possible Problems:

Section 2.2.2. Endpoint to Security Gateway Tunnel Group 1. The Initial Exchanges

Group 1.1. Header and Payload Formats

Test IKEv2.SGW.R.2.1.1.1: Sending IKE_AUTH response

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly Header and Payloads format

References:

• [RFC 4306] - Sections 1.2, 2.15, 3.1, 3.2, 3.3, 3.5, 3.8, 3.10, 3.13 and 3.14

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #5	

Part A: IKE Header Format (BASIC)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to NUT.
- 4. Observe the messages transmitted on Link A.

Part B: Encrypted Payload Format (BASIC)

- 5. TN1 transmits an IKE_SA_INIT request to NUT.
- 6. Observe the messages transmitted on Link A.
- 7. TN1 transmits an IKE_SA_INIT request to NUT.

8. Observe the messages transmitted on Link A.

Part C: IDr Payload Format (BASIC)

- 9. TN1 transmits an IKE_SA_INIT request to NUT.
- 10. Observe the messages transmitted on Link A.
- 11. TN1 transmits an IKE_SA_INIT request to NUT.
- 12. Observe the messages transmitted on Link A.

Part D: AUTH Payload Format (BASIC)

- 13. TN1 transmits an IKE SA INIT request to NUT.
- 14. Observe the messages transmitted on Link A.
- 15. TN1 transmits an IKE SA INIT request to NUT.
- 16. Observe the messages transmitted on Link A.

Part E: SA Payload Format (BASIC)

- 17. TN1 transmits an IKE_SA_INIT request to NUT.
- 18. Observe the messages transmitted on Link A.
- 19. TN1 transmits an IKE_SA_INIT request to NUT.
- 20. Observe the messages transmitted on Link A.

Part F: TSi Payload Format (BASIC)

- 21. TN1 transmits an IKE_SA_INIT request to NUT.
- 22. Observe the messages transmitted on Link A.
- 23. TN1 transmits an IKE_SA_INIT request to NUT.
- 24. Observe the messages transmitted on Link A.

Part G: TSr Payload Format (BASIC)

- 25. TN1 transmits an IKE_SA_INIT request to NUT.
- 26. Observe the messages transmitted on Link A.
- 27. TN1 transmits an IKE_SA_INIT request to NUT.
- 28. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted IKE Header containing following values:

7 01(011)
1 2 3
01234567890123456789012345678901
+-
! IKE_SA Initiator's SPI !
!
+-
! IKE_SA Responder's SPI !
!
+-
! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
+-
! Message ID !
+-
! Length !
+-

Figure 173 Header format

- An IKE_SA Initiator's SPI field set to same as the IKE_SA_INIT request's IKE SA Initiator's SPI field value.
- An IKE_SA Responder's SPI field set to same as the IKE_SA_INIT response's IKE_SA Responder's SPI field value.
- A Next Payload field set to Encrypted Payload (46).
- A Major Version field set to 2.
- A Minor Version field set to zero.
- An Exchange Type field set to IKE_AUTH (35).
- A Flags field set to (00010000)2 = (16)10.
- A Message ID field set to 1.
- A Length field set to the length of the message (header + payloads) in octets.

Part B

Step 6: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 8: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted Encrypted Payload containing following values:

Figure 174 Encrypted payload

- A Next Payload field set to IDr Payload (36).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length in octets of the header, IV, Encrypted IKE Payloads, Padding, Pad Length, and Integrity Check sum Data.
- An Initialization Vector field set to a randomly chosen value whose length is equal to the block length of the underlying encryption algorithm. It is 64 bits length in ENCR_3DES case.
- An Encrypted IKE Payloads field set to subsequent payloads encrypted by ENCR_3DES.
- A Padding field set to any value which to be a multiple of the encryption block size. It is 64 bits length in ENCR_3DES case.
- A Pad Length field set to the length of the Padding field.
- An Integrity Checksum Data set to the cryptographic checksum of the entire message. It is 96 bits length in AUTH_HMAC_SHA1_96 case. The checksum must be valid by calculation according to the manner described in RFC.

Part C

Step 10: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 12: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted ID Payload containing following values:

Figure 175 ID Payload format

- A Next Payload field set to AUTH Payload (39).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 24 bytes for ID_IPV6_ADDR.
- An ID Type field set to ID_IPV6_ADDR (5).
- A RESERVED field set to zero.
- An Identification Data field set to the NUT address.

Part D

Step 14: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 16: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 176 AUTH Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload. It is 28 bytes for PRF_HMAC_SHA1.
- An Auth Method field set to Shared Key Message Integrity Code (2).
- A RESERVED field set to zero.
- An Authentication Data field set to correct authentication value according to the manner described in RFC. It is 160 bytes length in PRF_HMAC_SHA1 case.

Part E

Step 18: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 20: Judgment #2

					FUKUM				
			1		2		3		
	0 1 2 3	4 5 6	7 8 9 0	1 2 3 4	5 6 7 8 9 0 1 2	3 4 5 6 7	78901		
	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -		
	! Next	44	!0!	0	! Length	40	!		
	+-+-+-+	+-+	-+-+-+-		+-+-+-+-+-+-+		-+-+-+-+ -		
	! 0	•	!	0	! Length	36	!	!	!
					+-+-+-+-+-+-+-+			1	
	! Number	1	! PIOL	טו טו	! SPI Size 4	! ITans	CHL 3!	1	1
	! SPI val	 IIE					 	 	
	+-+-+-+	+-+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		i
1	! 3	3	!	0	! Length	8	!	i	i
Transform	+-+-+-+	+-+	-+-+-+	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+	İ	SA Payloa
1	! Type 1	(EN)	!	0	! Transform ID	3	(3DES) !	Proposal	
	+-+-+-+	+-+	-+-+-+-	+-+-+-	+-+-+-+-+-+-+	-+-+-+-	-+-+-+-+		
_ !	! 3		!	0	! Length	8	!	!	!
Transform					+-+-+-+-+-+-+-+-+		-+-+-+-+		!
ı	! Type 3	3 (IN)			! Transform ID +-+-+-+		(SHA1) !		1
1	! ()	 	0	! Length	8	 	 	
Transform	•		-+-+-+-		: Longtn +-+-+-+-+-+	-	· -+-+-+-+		
	! Type 5				! Transform ID	0	(No) !	i	i
	+-+-+-+	+-+-+	, -+-+-+-	+-+-+-	+-+-+-+-+-+	-+-+-+-	-+-+-+-+ -	· ·	

Figure 177 SA Payload contents

The NUT transmits an IKE_AUTH response including properly formatted SA Payload containing following values (refer following figures):

Figure 178 SA Payload format

- A Next Payload field set to TSi Payload (44).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.

A Proposals field set to following.

Figure 179 Proposal sub-structure format

Proposal #1

- A 0 or 2 field set to zero (last).
- A RESREVD field set to zero.
- A Proposal Length field set to length of this proposal, including all transforms and attributes. It is 36 bytes according to Common Configuration.
- A Proposal # field set to 1.
- A Protocol ID field set to ESP (3).
- A SPI Size field set to 4.
- A # of Transforms field set to 3.
- A SPI field set to the sending entity's SPI (4 octets value)

Transform field set to following (There are 3 Transform Structures).

Figure 180 Transform sub-structure format

Transform #1

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ENCR_3DES.
- A Transform Type field set to ENCR (1).
- A RESERVED field set to zero.
- A Transform ID set to ENCR_3DES (3).

Transform #2

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including

Header and Attribute. It is 8 bytes for AUTH_HMAC_SHA1.

- A Transform Type field set to INTEG (3).
- A RESERVED field set to zero.
- A Transform ID set to AUTH_HMAC_SHA1 (2).

Transform #3

- A 0 or 3 field set to zero if this structure is the last transform, otherwise set to 3.
- A RESERVED field set to zero.
- A Transform Length set to length of the Transform Substructure including Header and Attribute. It is 8 bytes for ESN.
- A Transform Type field set to ESN (5).
- A RESERVED field set to zero.
- A Transform ID set to No Extended Sequence Numbers (0).

Part F

Step 22: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 24: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSi Payload containing following values:

Figure 181 TSi Payload format

- A Next Payload field set to TSr Payload (45).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

1 2	3		
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	3 9 0 1		
+-	+-+-+-		
! TS Type			
+-	+-+-+-		
Start Port* End Port*	- 1		
+-	+-+-+-+		
!	!		
~ Starting Address*	~		
!	!		
+-			
!	!		
~ Ending Address*	~		
!	!		
+-	+-+-+-+		

Figure 182 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to TN1 address.
- A Ending Address field set to greater that or equal to TN1 address.

Part G

Step 26: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 28: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted TSr Payload containing following values:

Figure 183 TSr Payload format

- A Next Payload field set to zero.
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A Number of TSs field set to 1.
- A RESERVED field set to zero.

Traffic Selectors field set to following.

Figure 184 Traffic Selector

- A TS Type set to TS_IPV6_ADDR_RANGE (8).
- An IP Protocol ID field set to zero.
- A Selector Length field set to length of this Traffic Selector Substructure including the header. It is 40 bytes for TS_IPV6_ADDR_RANGE.
- A Start Port field set to zero.
- An End Port field set to 65535.
- A Starting Address field set to less than or equal to Prefix B.
- An Ending Address field set to less than or equal to Prefix B.

Possible Problems:

• IKE_AUTH response has following packet format. It may have additional payloads described below. Additional payloads can be ignored by this test. The order of payload may be different from this sample.

```
IDr, [CERT+],
AUTH,
[CP(CFG_REPLY)],
[N(IPCOMP_SUPPORTED)],
[N(USE_TRANSPORT_MODE)],
[N(ESP_TFC_PADDING_NOT_SUPPORTED)],
[N(NON_FIRST_FRAGMENTS_ALSO)],
SA, TSi, TSr,
[N(ADDITIONAL_TS_POSSIBLE)],
[V+]
```

• Each of transforms can be located in the any order.

Test IKEv2.SGW.R.2.1.1.2: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 1.2

Test Setup:

- Network Topology
 - Connect the devices according to the Common Topology.
- Configuration
 - In each part, configure the devices according to the Common Configuration.
- Pre-Sequence and Cleanup Sequence
 - IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1
(Host)	(SGW)	(End-Node)
l i	<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
l i	İ	(Packet #1)
l i	j	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
l i	į	(Judgment #1)
l i	İ	
l i	<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
l i	į	Packet #2)
l i	j	> IKE_AUTH response (HDR, SK {IDr, AUTH, SAr2, TSi, TSr})
l i	İ	(Judgment #2)
l i	į	
<	· +=======	====== IPsec {Echo Request}
l i	1	(Judgment #3)
j	+=======	=====> IPsec {Echo Reply}
Li		(Judgment #4)
l i	į	
v	V	V

Packet #1	See Common Packet #2
Packet #2	See Common Packet #6

Part A (BASIC)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT response to NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to TH1.
- 6. Observe the messages transmitted on Link A.
- 7. TH1 transmits an Echo Reply to TN1.
- 8. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request.

Step 8 Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• None.

Group 1.2. Requesting an Internal Address on a Remote Network

Test IKEv2.SGW.R.2.1.2.1: Receipt of CFG_REQUEST

Purpose:

To verify an IKEv2 device transmits IKE_AUTH request using properly eader and Configuration Payload format

References:

• [RFC 4306] - Sections 3.15

Test Setup:

• Network Topology
Connect the devices according to the following topology.

Configuration
 In each part, configure NUT according to the Common Configuration except the traffic

selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address range.

	Traffic Selector					
	Source		Destination			
	Address		Port	rt Address Next Lay		Port
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW)	(End-Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, CP(CFG_REQUEST), SAi2, TSi, TSr})
	(Packet #2)
	> IKE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
	(Judgment #2)
V	V

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2: IKE_AUTH request packet

IPv6 Header	Same as Common Packet #5		
UDP Header	Same as Common Packet #5		
IKEv2 Header	Same as Common Packet	: #5	
E Payload	Same as Common Packet	: #5	
IDi Payload	Same as Common Packet	: #5	
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as	Common Packet #5	
CP Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length	12	
	CFG Type	1 (CFG_REQUEST)	
	RESERVED	0	
	Configuration Attributes	See below	
SA Payload	Same as Common Packet #5		
TSi Payload	Other fields are same as Common Packet #5		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #5		

Configuration Attributes	Reserved	0
	Attribute Type	INTERNAL_IP6_ADDRESS
	Length	0

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)	
	IP Protocol ID	0 (any)	
	Selector Length	40	
	Start Port	0	
	End Port	65535	
	Starting Address	:	
	Ending Address	###:###:###:###:###:###	

Part A: (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including properly formatted AUTH Payload containing following values:

Figure 185 Configuration Payload format

- A Next Payload field set to SA Payload (33).
- A Critical field set to zero.
- A RESERVED field set to zero.
- A Payload Length field set to length of the current payload.
- A CFG Type field set to CFG_REPLY (2).
- A RESERVED field set to zero.

A Configuration Attributes field set to following.

Figure 186 Configuration Attributes format

Configuration Attribute #1

- Reserved field is set to zero.
- Attribute Type field is set to INTERNAL_IP6_ADDRESS (8).
- Length field is set to 17.
- Value field is set to Prefix B::1 as IPv6 address and 128 as prefix-length.

Possible Problems:

• None.

Test IKEv2.SGW.R.2.1.2.2: Use of CHILD_SA

Purpose:

To verify an IKEv2 device properly handles the Initial Exchanges using Pre-shared key

References:

• [RFC 4306] - Sections 2.19 and 3.15

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address table.

	Source			Destination		
	Address Range	Next Layer Protocol	Port Range	Address Range	Next Layer Protocol	Port Range
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1
(Host)	(SGW)	(End-Node)
1	1	
1	<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	I	(Packet #1)
		> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	I	(Judgment #1)
	ı	
!	<	
!	ļ.	CP(CFG_REQUEST), SAi2, TSi, TSr})
!	ļ.	(Packet #2)
!		
!	!	(Judgment #2)
	I	
<		======= IPsec {Echo Request}
!	I	(Packet #3) (Judgment #3)
!		=======> IPsec {Echo Reply}
1 !	!	(Packet #4) (Judgment #4)
	l V	
V	V	V

Packet #1	See Common Packet #1	
Packet #2	See below	
Packet #3	See below	
Packet #4	See below	

• Packet #2: IKE_AUTH request packet

IPv6 Header	Same as Common Packet #5		
UDP Header	Same as Common Packet #5		
IKEv2 Header	Same as Common Packet	: #5	
E Payload	Same as Common Packet	: #5	
IDi Payload	Same as Common Packet	: #5	
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as	Common Packet #5	
CP Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	
	Payload Length	12	
	CFG Type	1 (CFG_REQUEST)	
	RESERVED	0	
	Configuration Attributes	See below	
SA Payload	Same as Common Packet #5		
TSi Payload	Other fields are same as Common Packet #5		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #5		

Configuration Attributes	Reserved	0
	Attribute Type	INTERNAL_IP6_ADDRESS
	Length	0

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
Selector Length		40
Start Port		0
End Port		65535
	Starting Address	::
	Ending Address	###:###:###:###:###:###

Packet #3: Echo Request packet

IPv6 Header	Same as Common Packet #22	
ESP	Same as Common Packet #22	
IPv6 Header	Source Address Prefyx B::1	
	Destination Address	
ICMPv6 Header	Same as Common Packet #22	

• Packet #4: Echo Reply packet

IPv6 Header	Source Address	Prefyx B::f	
	Destination Address	Prefix B::1	
ICMPv6 Header	Same as Common Packet #26		

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to TH1.
- 6. Observe the messages transmitted on Link A.
- 7. TH1 transmits an Echo Reply to TN1.
- 8. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request to the TH1.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TN1 can send Echo Reply to TH1 instead of sending Echo Request.

Test IKEv2.SGW.R.2.1.2.3: Non zero RESERVED fields in Configuration Payload

Purpose:

To verify an IKEv2 device ignores the content of RESERVED filed in IKE messages.

References:

• [RFC 4306] - Sections 2.5

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address table.

	Traffic Selector					
	Source		Destination			
	Address Next Layer Port		Address	Next Layer	Port	
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1
(Host)	(SGW)	(End-Node)
	<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Packet #1)
		> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
		(Judgment #1)
J	<	IKE_AUTH request (HDR, SK {IDi, AUTH,
		CP(CFG_REQUEST), SAi2, TSi, TSr})
		(Packet #2)
		> IKE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr}
	1	(Judgment #2)
	1	
V	V	V

Packet #1	See Common Packet #1
Packet #2	See below

• Packet #2: IKE_AUTH request packet

IPv6 Header	Same as Common Packet #5		
UDP Header	Same as Common Packet #5		
IKEv2 Header	Same as Common Packet	: #5	
E Payload	Same as Common Packet	: #5	
IDi Payload	Same as Common Packet	: #5	
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as Common Packet #5		
CP Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	1	
	Payload Length	12	
	CFG Type	1 (CFG_REQUEST)	
	RESERVED	1	
	Configuration Attributes	See below	
SA Payload	Same as Common Packet #5		
TSi Payload	Other fields are same as Common Packet #5		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #5		

Configuration Attributes	Reserved	1
	Attribute Type	INTERNAL_IP6_ADDRESS
	Length	0

Traffic Selector TS Type 8 (II	PV6_ADDR_RANGE)
------------------------------------	-----------------

FOROW			
	IP Protocol ID	0 (any)	
	Selector Length	40	
	Start Port	0	
	End Port	65535	
	Starting Address	:	
	Ending Address	###:###:###:###:###:###:###	

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Possible Problems:

• None.

Test IKEv2.SGW.R.2.1.2.4: No Configuration payload

Purpose:

To verify an IKEv2 device properly handles the message which does not include Configuration payload, when the device expects Configuration payload.

References:

• [RFC 4306] - Sections 2.19 and 3.10.1

Test Setup:

• Network Topology
Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address table.

	Traffic Selector					
	Source		Destination			
	Address Next Layer Port		Address	Next Layer	Port	
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY

 Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1
(SGW) (Ei	nd-Node)
<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
	(Packet #1)
	-> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	(Judgment #1)
<	IKE_AUTH request (HDR, SK {IDi, AUTH, SAi2, TSi, TSr})
	(Packet #2)
	-> IKE_AUTH response (HDR, SK {N(FAILED_CP_REQUIRED)})
	(Judgment #2)
V	V

Packet #1	See Common Packet #1	
Packet #2	See Common Packet #5	
	This packet does not include CP payload.	

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response with a Notify payload of type FAILED_CP_REQUIRED.

Possible Problems:

• None.

Test IKEv2.SGW.R.2.1.2.5: Receipt of Multiple CFG_REQUEST

Purpose:

To verify an IKEv2 device properly handles multiple CFG_REQUEST.

References:

• [RFC 4306] - Sections 2.19 and 3.15

Test Setup:

Network Topology
 Connect the devices according to the following topology.

Configuration

In each part, configure NUT according to the Common Configuration except the traffic selector. Configure NUT to transmit CFG_REPLY for INTERNAL_IP6_ADDRESS. Its IPv6 address is Prefix B::1/128. The traffic selector must be configured by the following table. NUT must narrow Traffic Selector to the following address table.

	Traffic Selector					
	Source		Destination			
	Address Next Layer Port		Address	Next Layer	Port	
	Range	Protocol	Range	Range	Protocol	Range
Inbound	TN1 (internal address)	ANY	ANY	Link B	ANY	ANY
Outbound	Link B	ANY	ANY	TN1 (internal address)	ANY	ANY

• Pre-Sequence and Cleanup Sequence IKEv2 on the NUT is disabled after each part.

Procedure:

TH1	NUT	TN1
(Host)	(SGW)	(End-Node)
1	1	
	<	IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Packet #1)
		> IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
		(Judgment #1)
!	ļ	
	<	IKE_AUTH request (HDR, SK {IDi, AUTH,
!	ļ	CP(CFG_REQUEST), SAi2, TSi, TSr})
1 !	ļ.	(Packet #2)
1 !		> IKE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})
1 !	ļ	(Judgment #2)
1 !.	l	L IDago (Faha Dagusat)
<		IPsec {Echo Request}
1 :	ļ !	(Packet #3) (Judgment #3)
1 :		(Packet #4) (Judgment #4)
	 	====== IPsec {Echo Request}
	i	(Packet #5) (Judgment #5)
	' +======	
1 i	İ	(Packet #6) (Judgment #6)
1 i	i	
V	V	V

Packet #1	See Common Packet #1
Packet #2	See below
Packet #3	See below
Packet #4	See below
Packet #5	See below
Packet #6	See below

• Packet #2: IKE_AUTH request packet

IPv6 Header	Same as Common Packet #5		
UDP Header	Same as Common Packet #5		
IKEv2 Header	Same as Common Packet	: #5	
E Payload	Same as Common Packet	: #5	
IDi Payload	Same as Common Packet #5		
AUTH Payload	Next Payload	47 (CP)	
	Other fields are same as Common Packet #5		
CP Payload	Next Payload	33 (SA)	
	Critical	0	
	Reserved	0	

	1 9119111		
	Payload Length	16	
	CFG Type	1 (CFG_REQUEST)	
	RESERVED	0	
	Configuration Attributes	See below	
SA Payload	Same as Common Packet #5		
TSi Payload	Other fields are same as Common Packet #5		
	Traffic Selectors	See below	
TSr Payload	Same as Common Packet #5		

Configuration Attributes	Reserved	0
	Attribute Type	INTERNAL_IP6_ADDRESS
	Length	0
Configuration Attributes	Reserved	0
	Attribute Type	INTERNAL_IP6_ADDRESS
	Length	0

Traffic Selector	TS Type	8 (IPV6_ADDR_RANGE)
	IP Protocol ID	0 (any)
	Selector Length	40
	Start Port	0
	End Port	65535
	Starting Address	::
	Ending Address	###:###:###:###:###:###

• Packet #3: Echo Request packet

IPv6 Header	Same as Common Packet #22		
ESP	Same as Common Packet #22		
IPv6 Header	Source Address Prefyx B::1		
	Destination Address Prefix B::f		
ICMPv6 Header	Same as Common Packet #22		

• Packet #4: Echo Reply packet

IPv6 Header	Source Address	Prefyx B::f
	Destination Address	Prefix B::1
ICMPv6 Header	Same as Common Packet #26	

• Packet #5: Echo Request packet

IPv6 Header	Same as Common Packet #22	
ESP	Same as Common Packet #22	
IPv6 Header	Source Address	Prefyx B::2
	Destination Address	Prefix B::f
ICMPv6 Header	Same as Common Packet #22	

• Packet #6: Echo Reply packet

IPv6 Header	Source Address	Prefyx B::f
	Destination Address	Prefix B::2
ICMPv6 Header	Same as Common Packet #26	

Part A (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE_SA_INIT request to the NUT.
- 4. Observe the messages transmitted on Link A.
- 5. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to TH1.

- 6. Observe the messages transmitted on Link A.
- 7. TH1 transmits an Echo Reply to TN1.
- 8. Observe the messages transmitted on Link B.
- 9. TN1 transmits an Echo Request with IPsec ESP using corresponding algorithms to TH1.
- 10. Observe the messages transmitted on Link A.
- 11. TH1 transmits an Echo Reply to TN1.
- 12. Observe the messages transmitted on Link B.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT response including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH response including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms.

Step 6: Judgment #3

The NUT forwards an Echo Request to the TH1.

Step 8: Judgment #4

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Step 10: Judgment #5

The NUT forwards an Echo Request to the TH1.

Step 12: Judgment #6

The NUT forwards an Echo Reply with IPsec ESP using corresponding algorithms.

Possible Problems:

• Because the destination address of Echo Request is the TN itself, TN may respond to Echo Request automatically. In that case, TN1 can send Echo Reply to TH1 instead of sending Echo Request.

Group 2. RFC 5996

Group 2.1. Rekeying IKE SAs Using a CREATE_HLD_SA Exchange

[SGW.R.P116.L5437.ADD] Test IKEv2.SGW.R.2.2.1.1.XXX: Sending INFORMATIONAL Exchange

Purpose:

To verify an IKEv2 device can handle a particular type of address that the device does not support

References:

• [RFC 5996] - Section 3.15.4

Test Setup:

- Network Topology
 Connect the devices according to the Common Topology.
- Configuration

In each part, configure the devices according to the Common Configuration.

Pre-Sequence and Cleanup Sequence
 IKEv2 on the NUT is disabled after each part.

Procedure:

NUT	TN1	
(SGW)	(End-N	lode)
	1	
<		IKE_SA_INIT request (HDR, SAi1, KEi, Ni)
		(Packet #1)
		IKE_SA_INIT response (HDR, SAr1, KEr, Nr)
	1	(Judgment #1)
<		<pre>IKE_AUTH request (HDR, SK {IDi, AUTH, CP(CFG_REQUEST), SAi2, TSi, TSr})</pre>
		(Packet #2)
		<pre>IKE_AUTH response (HDR, SK {IDr, AUTH, CP(CFG_REPLY), SAr2, TSi, TSr})</pre>
		(Judgment #2)
V	V	

Packet #1	See Common Packet #1
	See Common Packet #5
	Configuration payload has 2 Configuration Attributes.
	One is Attribute Type is INTERNAL_IP4_Address.
Packet #2	Another is Attribute Type is INTERNAL_IP6_Address.

Part A: (ADVANCED)

- 1. TN1 transmits an IKE_SA_INIT request to NUT.
- 2. Observe the messages transmitted on Link A.
- 3. TN1 transmits an IKE SA INIT request to NUT. The request has 2 Configuration

Attributes. One is Attribute Type of INTERNAL_IP4_ADDRESS. Another is Attribute Type of INTERNAL_IP6_ADDRESS.

4. Observe the messages transmitted on Link A.

Observable Results:

Part A

Step 2: Judgment #1

The NUT transmits an IKE_SA_INIT request including "ENCR_3DES", "PRF_HMAC_SHA1", "AUTH_HMAC_SHA1_96" and "D-H Group 2" as proposed algorithms.

Step 4: Judgment #2

The NUT transmits an IKE_AUTH request including "ENCR_3DES", "AUTH_HMAC_SHA1_96" and "No Extended Sequence Numbers" as proposed algorithms. Configuration Payload is a Configuration Attribute. Its Attribute Type is INTERNAL_IP6_ADDRESS.

Possible Problems:

If a device cannot discontinue support of IPv4 this test may be omitted.

All Rights Reserved. Copyright (C) 2008
Yokogawa Electric Corporation

Yokogawa Electric Corporation
Nippon Telegraph and Telephone Corporation (NTT)

No part of this documentation may be reproduced for any purpose without prior permission.